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Abstract

Commentators often lament forecasters’ inability to provide precise predictions of the

long-run behaviour of complex economic and physical systems. Yet their concerns of-

ten conflate the presence of substantial long-run uncertainty with the need for long-run

predictability; short-run predictions can partially substitute for long-run predictions if

decision-makers can adjust their activities over time. So what is the relative importance

of short- and long-run predictability? We study this question in a model of rational dy-

namic adjustment to a changing environment. Even if adjustment costs, discount factors,

and long-run uncertainty are large, short-run predictability can be much more important

than long-run predictability.
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1 Introduction

Scientific progress over the past four hundred years has rendered a staggering range of phenom-

ena more predictable. Atmospheric scientists forecast the weather, epidemiologists predict the

spread of infectious diseases, macroeconomists forecast economic growth, and demographers

predict population change. Yet despite many successes, reliable predictions of the long run

behaviour of complex social or natural systems often remain elusive (Granger & Jeon, 2007;

Palmer & Hagedorn, 2006). Inability to predict the long run is frequently seen as a barrier

to effective decision-making, and can be a source of emotional distress and planning inertia
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(Grupe & Nitschke, 2013). Concomitantly, improving long-run predictability is often a major

goal of the scientific communities that produce forecasts. But just how important is it to be

able to predict the distant future? Does substantial long-run uncertainty necessarily imply

that accurate long-run predictions would be highly valuable? Or can long-run predictions be

effectively substituted by short-run forecasts when decisions can be adjusted dynamically as

new information arrives? This paper attempts to shed light on these questions.

It is not uncommon to find the presence of long-run uncertainty identified with the need

for improved long-run predictions.1 For example, a recent report by The National Academy

of Sciences (2016) on planned improvements in long-range weather forecasting suggests that

‘Enhancing the capability to forecast environmental conditions outside the well-developed

weather timescale – for example, extending predictions out to several weeks and months

in advance – could dramatically increase the societal value of environmental predictions,

saving lives, protecting property, increasing economic vitality, protecting the environment,

and informing policy choices.’ Similarly, many commentators have suggested that the lack

of reliable projections of the local impacts of climate change, most of which will occur many

decades hence, is a significant barrier to effective adaptation planning. Füssel (2007), for

example, contends that ‘the effectiveness of pro-active adaptation to climate change often

depends on the accuracy of [long run] regional climate and impact projections’. One can find a

similar identification of the presence of long-run uncertainty with the importance of long-run

predictions in economics. Lindh (2011), for example, states that ‘Very long-run...forecasts

of economic growth are required for many purposes in long-term planning. For example,

estimates of the sustainability of pension systems need to be based on forecasts reaching

several decades into the future.’

While one-shot decisions with fixed lead times between actions and outcomes (e.g. agricul-

tural planting decisions) doubtless benefit from predictability at decision-relevant time-scales,

most long-run decision processes are at least partially flexible, and can thus be adjusted over

time. Firms or individuals who anticipate long-run changes in market conditions, regulation,

or their physical environments will adjust their actions dynamically as new information be-

comes available. Similarly, governments concerned with policies that depend on conditions in

the distant future (e.g. social security or adaptation to climate change) can alter the level of

policy instruments dynamically as the future unfolds. The sequential nature of many long-

run adjustment processes implies that there is no generic association between the presence

of long-run uncertainty and the importance of long-run predictions. Since the long-run to-

day will become the short-run tomorrow, short-run predictions can play an important role

1An anecdote related by Kenneth Arrow (1991) about his time as a military weather forecaster during
World War Two provides an extreme example: ‘Some of my colleagues had the responsibility of preparing long-
range weather forecasts, i.e., for the following month. The statisticians among us subjected these forecasts
to verification and found they differed in no way from chance. The forecasters themselves were convinced
and requested that the forecasts be discontinued. The reply read approximately like this: The Commanding
General is well aware that the forecasts are no good. However, he needs them for planning purposes.’
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in informing decision-making, even when long-run uncertainty is large. Indeed, it is intuitive

that short-run predictability is a perfect substitute for long-run predictability if adjustment

is costless. In general however adjustment is costly, and large abrupt changes in response to

short-run warnings are often significantly more costly than managed gradual transitions that

may be informed by accurate long-run predictions. This suggests that long run predictions

could play an important role in informing anticipatory planning, and avoiding excessive ad-

justment costs. It is however unclear a priori how the importance of predictability at different

lead times depends on the magnitude of adjustment costs. We develop a simple analytical

model in which this question is answerable.

Our model considers a decision-maker whose period payoffs depend on how well adapted

her choices are to the current state of the world. The state of the world is uncertain, and may

change over time in a non-stationary manner. The decision-maker may adjust her choices in

every period to account for expected changes in her environment, but faces convex adjustment

costs. This cost structure makes rapid adjustments in response to short-run warnings more

costly than gradual incremental shifts of equal magnitude (which may be informed by long-

run predictions).2 Optimal decisions thus balance the benefits of exploiting current conditions

with the need to anticipate future conditions in order to avoid costly rapid adjustments in

the future. The decision-maker has access to a prediction system that generates forecasts

of all future states in every period. These forecasts have a fixed profile of accuracy as a

function of lead time. Thus, if τm is a measure of the accuracy of forecasts of lead time m,

the decision-maker receives a forecast of accuracy τ1, τ2, . . . of states of the world 1, 2, . . . time

steps from the present in every period. For example, the decision-maker receives a forecast

of accuracy τ2 about a state two time steps from now in the current period, but knows that

in the next period she will receive a new forecast of the same state, this time with accuracy

τ1. She may change her decisions in order to react to new predictions once they become

available, but doing so entails a cost. Although the model reduces to a stochastic-dynamic

control problem with an infinite number of state variables, we find an analytic expression for

the decision-maker’s discounted expected payoffs V as a function of the profile of predictive

accuracy that the prediction system exhibits:

V = V (τ1, τ2, τ3, . . .).

By exploring the dependence of V on its arguments, and the parameters of the decision

problem, we quantify the value of predictability at different lead times. Our central finding is

that if we account for sequential forecast updating and agents’ ability to adjust their activities

over time, short-run predictability can be more important than long-run predictability, even

2Assuming convex adjustment costs is thus conservative with respect to adjudicating the importance of
long-run predictability, as this assumption favours long-run predictions. See the text following equation (21)
below for further discussion.
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if adjustment costs, discount factors, and long-run uncertainty are large.

Although there is a sizeable literature on the value of information and its role in dynamic

decision-making, as far as we know there are few direct antecedents to the questions we

seek to address in this paper. The literature on the value of information began with the

pathbreaking work of Blackwell (1953) and Marschak & Miyasawa (1968), who defined an

incomplete ordering of the ‘informativeness’ of arbitrary information structures. We share

this work’s micro-oriented focus on the value of exogenous information sources for individual

decision-makers, but also differ from it in important respects. In order to ensure tractability,

our model makes strong assumptions about the nature of agents’ payoff functions and the

forecasts they receive. The return for this specificity is that we are able to study a much richer

set of dynamic decisions than is typically used in this literature. Our focus on the dynamic

characteristics of predictions, i.e., their accuracy as a function of lead time, is absent from

this literature, and necessitates a pared down approach.

Work on the role of information in optimal dynamic decision-making falls into two cate-

gories: two period models that examine the effect of second period learning on optimal first

period decisions (e.g. Arrow & Fisher, 1974; Epstein, 1980; Gollier et al., 2000), or infinite

horizon models that involve learning about the realizations of a stochastic state variable (e.g.

Merton, 1971), or a parameter of a structural dynamic-stochastic model (e.g. Ljungqvist &

Sargent, 2004). Neither of these standard approaches can capture the effects we study here.

Two period models cannot capture the repeatedly updated nature of prediction and the de-

pendence of predictability on lead time, both essential features of our model. Finite horizon

models also suffer from an inherent bias towards short-run forecasts, as in a model with hori-

zon H there will be H lead time 1 forecasts, but only one lead time H forecast. On the other

hand, models based on familiar stochastic processes, or learning about parameters of struc-

tural models, do not allow the accuracy of predictions at different lead times to be controlled

independently, meaning that it is impossible to ask questions about the relative importance of

short- and long-run predictability (see the discussion on p. 8 for an elaboration of this point).

We thus need a different approach if we are to define a model that is tractable, unbiased,

disentangles lead times, and nevertheless retains coarse features of dynamic prediction.

A small applied literature studies the effect of forecasts at different lead times on dy-

namic decision-making. Costello et al. (2001) study a finite horizon stochastic renewable

resource model and show that forecasts of shocks more than one step ahead carry no value

for a resource manager. This result follows directly from the fact that their model is linear

in the control variable; this removes the interactions between decisions in different periods,

rendering long-run forecasts irrelevant. Costello et al. (1998) use numerical methods to study

the effect of one and two period ahead forecasts in a calibrated nonlinear resource manage-

ment model, showing that for some parameter values perfect information at these lead times

provides substantial value. Our work considerably generalizes these findings. We analyze a

4



nonlinear model that exhibits non-trivial interactions between time periods, use an infinite

time horizon that removes bias against long-run forecasts, obtain analytic solutions that en-

able clean comparative statics without the need for a calibrated numerical model, calculate

the contribution of forecasts at all lead times to the overall value of a prediction system, and

allow forecasts of arbitrary accuracy.

Finally, a substantial literature delineates the difficulties of long-run forecasting in con-

texts as diverse as climate science, macroeconomics, demography, epidemiology, and national

security (see e.g. Palmer & Hagedorn, 2006; Granger & Jeon, 2007; Lindh, 2011; Lee, 2011;

Myers et al., 2000; Yusuf, 2009). A common refrain in much of this work is that accurate

long-run forecasting is difficult, but would be of considerable value for decision-makers if

achievable. Yet to our knowledge there is no existing analytical framework that provides

intuition for if, and when, this is likely to be true. Our work provides a first step towards

such a framework, illustrating in a simple model how a decision-maker’s ability to adapt to

changes in her environment dynamically, and the costs she sustains in doing so, co-determine

the relative importance of short-run and long-run predictability.

2 The model

The model we develop is a variation on a work-horse model of rational dynamic adjustment

to a changing environment that has been deployed in a variety of settings. These include

modeling firm behaviour in the face of changing market conditions (e.g. Sargent, 1978; Fischer

& Blanchard, 1989), and so-called ‘target tracking’ in military and engineering applications.

The model provides a stylized and analytically tractable representation of a class of decision

problems in which a decision-maker’s period payoffs depend on an exogenously changing

environmental variable, and changes in activities incur adjustment costs. We discuss our

model’s assumptions and how they differ from existing work below, but first spell out the

details.

2.1 Model statement

Consider a decision-maker who faces an uncertain exogenous environment at each time n ∈ N.

The units of time are arbitrary, but should be understood to match the frequency of forecast

updates (e.g., days for weather forecasts, quarters for inflation forecasts). We assume that the

decision-maker’s possible choices can be mapped into the real line, and denote a generic choice

by X ∈ R. We will operate at a high level of abstraction, and thus leave the interpretation of

X open. The more literal-minded reader is referred to Online Appendix A, where we provide

a direct interpretation of the decision problem we examine in terms of a competitive firm

making production decisions in the face of uncertain future prices. Other interpretations are

of course possible, e.g. X could be the level of a tax set by a regulator, or an individual’s
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stock of defensive capital.

The decision-maker may adjust X in each period, at a cost that is convex in the magni-

tude of the adjustment. Since large abrupt changes in activities are more costly than gradual

incremental shifts of equal magnitude, the decision-maker has an incentive to engage in antic-

ipatory planning. The state of the world at time n, denoted by θ̃n ∈ R, is the loss-minimizing

action in that period, and we assume that the θ̃n are independently (but not identically)

distributed (we discuss this important assumption on p. 8). Throughout the paper an n su-

perscript on any variable always denotes a time index, rather than an exponent. Values of X

that are closer to θ̃n are better adapted to conditions at time n, and give rise to higher pe-

riod payoffs. The decision-maker’s choices must achieve a balance between exploiting current

conditions (i.e., choosing X close to the current expected value of θ̃) and preparing for future

conditions (i.e., shifting X towards expected future values of θ̃), thus avoiding excessively

large and costly adjustments later on.

For any time n, let θnt = θ̃n+t for t ≥ 0, i.e., θnt is the value of the loss-minimizing

decision that will be realized t time steps in the future, in period n (see Figure 1 below for an

illustration). We denote the agent’s beliefs about θnt by pnt (θnt ). At n = 0 the agents’ prior

beliefs about the future values θ0t are captured by an infinite sequence of normal distributions

with means µ0t and precisions (i.e., inverse variance) λ0t :

θ0t ∼ N (µ0t , 1/λ
0
t ). (1)

The values of µ0t and λ0t are unconstrained, allowing us to describe a wide variety of initial

beliefs about the future. In particular, we do not require the agent to believe that the

environmental random variables θ̃n are identically distributed over time.

Let Xn be the value of the decision variable X that the agent inherits at the beginning of

period n. At the beginning of the period the agent chooses a new value for X, i.e., Xn+1. This

is the value of X that will affect payoffs in the current period, and be passed forward to the

next period. The cost of modifying the decision variable from Xn to Xn+1 is 1
2α(Xn+1−Xn)2,

where α ≥ 0 is a parameter that captures the magnitude of the adjustment costs the agent

faces. After the choice of Xn+1 is made, the agent experiences the realization of θ̃n = θn0 , and

sustains a loss equal to half the squared distance between Xn+1 and θn0 . Thus, the expected

period payoff at the beginning of the current period is given by,

W (Xn+1, Xn, pn0 (θn0 )) = −1

2

[∫ ∞
−∞

(Xn+1 − θn0 )2pn0 (θn0 )dθn0 + α(Xn+1 −Xn)2
]
. (2)

The decision-maker’s objective function is the usual discounted sum of expected period pay-

offs, which will be defined in full below. As advertised, the reader seeking an interpretation

of this payoff function in a familiar economic application is referred to Online Appendix A.

To model the effect of predictions on the agent’s beliefs, we assume that at the end of
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each period n, the agent receives a sequence of forecasts Sn = (snt )t≥1 of the values of future

states θnt for all t ≥ 1. We assume that

snt = θnt + εnt (3)

where

εnt ∼ N (0, 1/τt), Cov(εnt , ε
n
t+k) = 0 if k ≥ 1. (4)

The parameter τt ≥ 0 is the precision of forecasts of events t time steps ahead. Thus predic-

tions have an exogenous profile of precision as a function of lead time, parameterized by the

infinite sequence

~τ = (τ1, τ2, τ3, . . .).

The precision sequence ~τ is time invariant, i.e., the prediction system is assumed to produce

forecasts with the same profile of accuracy as a function of lead time at every time n.3

Consider two prediction systems A and B, with precision sequences ~τA, ~τB. If, for a fixed

lead time t, τAt > τBt , then A is more informative (in the sense of Blackwell (1953)) than

B about events t time steps in the future. Although in practice we would expect ~τ to be a

decreasing sequence, we place no constraints on its value in what follows.

Notice that the agent receives a new sequence of forecasts Sn at the end of every period

n. However, the precision of the information she receives about a particular value θ̃k that lies

in her future changes as time progresses and she moves closer to time k. Since the agent’s

prior beliefs about the future values θ0t in period n = 0 are normal, and the conditional

distributions of signals s0t given states are normal, her beliefs about the future values of

the states will update according to the standard normal-normal Bayesian formulae (see e.g.

DeGroot, 1970). At any time n beliefs about future values θnt will be normally distributed,

and characterized by a sequence of means µnt and precisions λnt . Moreover, the agent knows

that the beliefs she currently holds about the future values θnt will become her beliefs about

θn+1
t−1 in the next period. For example, her current beliefs about the next period will become

her beliefs about the current period, in the next period. Using these observations, we can

write down the state equations that describe how the forecasting system changes the agent’s

beliefs about the values of the states θnt from one period to the next:

µn+1
t (snt+1) =

τt+1

τt+1 + λnt+1

snt+1 +
λnt+1

τt+1 + λnt+1

µnt+1

λn+1
t = λnt+1 + τt+1. (5)

As is standard in the normal-normal Bayesian updating model, the posterior mean of beliefs

3While we make this assumption for simplicity and clarity, we note that any covariance stationary time
series satisfies the time invariance property. We mention this not because our model is covariance stationary
(it need not be), but to illustrate that this property is not unusual.
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about each future value θnt is a convex combination of the prior mean and the signal realization,

with the weight that is placed on the signal increasing in the signal precision. Posterior

precisions, however, evolve deterministically. A complete description of the current state of

the system at the beginning of period n is thus given by the ordered pair (Xn, Y n), where

Y n ≡ ((µnt )t≥0, (λ
n
t )t≥0), (6)

collects together the infinitely many ‘belief’ state variables, and Xn is the value of X the

agent inherits at the beginning of the period. The dynamics of Y n are given by (5), and the

next value of X is chosen directly by the agent. Figure 1 provides a graphical summary of

the model setup, and the timing of events.

Before proceeding to the solution of the model, we now discuss some of its more unusual

assumptions and how they relate to existing work. The payoff structure in the model, captured

by (2), is formally identical to that in previous models of dynamic adjustment we alluded to

at the beginning of this section. The novelty in our approach arises from our representation

of the decision-maker’s dynamic expectations, i.e., the updating process summarised in (5).

In existing applications of the dynamic adjustment model the loss-minimising decisions θ̃n

are always modelled as realisations of a serially correlated stochastic process. Sargent (1978),

for example, assumes that θ̃ follows an AR(1) process. However, such models are not suited

to the central question of this paper, i.e., understanding the relative importance of short- and

long-run predictability. To understand why, suppose that the θ̃n are serially correlated, and

that a prediction system provides information about some θ̃n. Then learning about θ̃k means

that we learn something about all values of θ̃n. It is thus not usually possible to associate a

prediction about an event at a given lead time with a change in uncertainty at only that lead

time in a serially correlated model.4 Our central question is thus unanswerable in serially

correlated models, unless the correlation structure can be tuned to generate arbitrary patterns

of predicability as a function of lead time.5

By contrast, our model possesses four desirable features for our purposes. First, and most

importantly, it disentangles lead times. There is a unique parameter τt associated with the

accuracy of forecasts of lead time t; changing that parameter changes the accuracy of forecasts

at that lead time only. This is a consequence of our assumption that the states of the world θnt

4To see the difficulty in an explicit example consider an AR(1) model: θ̃n+1 = ρθ̃n+νn, where νn ∼ N (0, ξ2),

ρ ≥ 0. In this case θ̃n+t ∼ N
(
ρtθ̃n, 1−ρt

1−ρ ξ
2
)

. The only thing that can be done to change the predictability of

the environment in this model is to change ρ or ξ, however those changes affect predictability at all lead times
at once.

5This could be possible, for example, in models where the state equation depends on many lagged variables
(e.g. AR(n) models), however one needs an infinite number of lags to disentangle all lead times, the relationship
between parameters of the state equation and predictability at different lead times is often complex, and such
models do not admit a separation between prior uncertainty and predictability. Costello et al. (1998) use an
independence assumption that is similar to ours, and sequential event forecasts of the kind we consider have
also been studied in e.g. Clements (1997); Selten (1998); Regnier (2017).
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Figure 1: Illustration of the model setup. The figure depicts the agent’s beliefs about future
states (dark blue distributions), choices (location of X on the vertical axis), and the signals
provided by the prediction system (dark red dots), in the first two periods n = 0, 1. The
current choice variable Xn+1 is in black, and the inherited location Xn is in grey. The brown
distributions at each t capture the agent’s expectations about the signals she will receive at the
end of the current period (i.e., qnt (snt ;Y n) in (7)). The dark blue distributions in the bottom
line are updated beliefs at the beginning of period 1, after S0 = (s0t )t≥1 has been observed.
The dashed light blue distributions and dots in the bottom line are the agent’s previous
beliefs and signals in period 0, for comparison. Smaller values of forecast precision τt, which
are assumed to occur at longer lead times in this example, correspond to wider distributions
of expected forecast realisations, and weaker belief updating towards the realised signal.
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and signals snt at different times t are independent. The decision relevant interaction between

periods in the model arises from the structure of the agent’s payoffs (i.e., the presence of

nonlinear adjustment costs), and not from serial correlations in the environment. Second,

the model allows us to separate the agent’s prior uncertainty (captured by the sequence of

initial precisions λ0t ), from the accuracy of the forecasting system (captured by ~τ). This

will allow us to study how the value of predictability at different lead times depends on

the agent’s initial uncertainty about short- and long-run events, and would not be possible

in a standard structural model. Third, the model is ‘unbiased’: because the time horizon

is infinite the agent receives an equal number of forecasts at each lead time. Fourth, the

model retains coarse features of dynamic prediction (i.e., sequentially updated expectations,

and predictions whose accuracy depends on lead time), while maintaining tractability and

parsimony. The analytical cost of this approach is that instead of being able to describe

dynamic expectations with a single state variable as in standard models, we now require an

infinite number of state variables, two for each independent belief about each future event.

In sum, while the independence assumption we deploy may seem unusual to some readers,

it is a very convenient expediency if we are to generate conceptual insights into the relative

importance of predictability at different lead times. We now turn to the model’s solution.

2.2 Solution

Let V (Xn, Y n) be the current value of the infinite dimensional state (Xn, Y n), where Y n is

defined in (6). The next period value of the state depends on the sequence of signals Sn that

the agent will receive at the end of the current period. At the beginning of period n the

agent’s beliefs about signal snt (t ≥ 1) are given by:

qnt (snt ;Y n) =

∫ ∞
−∞

Prob(snt |θnt )pnt (θnt )dθnt

⇒ snt |Y n ∼ N (µnt , 1/λ
n
t + 1/τt), (7)

where the last line follows from a simple calculation using (3–4). We denote the agent’s beliefs

about the probability of receiving a sequence of signals Sn = (snt )t≥1 by

Q(Sn;Y n) =
∞∏
t=1

qnt (snt ;Y n). (8)

We are now ready to state the Bellman equation for the value function V (Xn, Y n). Denote

the next period value of the belief states Y n+1 as a function of the previous value Y n and the

realized signal sequence Sn as

Y n+1 = F (Y n, Sn), (9)
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where F (Y n, Sn) is given by (5). Then,

V (Xn, Y n) = max
Xn+1

W (Xn+1, Xn, Y n) + β

∫
R∞

V (Xn+1, F (Y n, Sn))Q(Sn;Y n)dSn, (10)

where dSn =
∏∞
t=1 ds

n
t , β ∈ (0, 1) is the agent’s discount factor, and we have changed notation

slightly to emphasize the dependence of the period payoff function (2) on the belief state

variables Y n. Note that the dependence of the value function on the profile of forecast

precisions ~τ comes both through the updating rule F (Y n, Sn) (see eq. (5)), and through

the agent’s expectations about the values of future forecast realizations (see eq. (7)). Thus,

increases in predictability affect both the quality of future decisions (by reducing the variance

of outcomes), and the agent’s expectations about the information that will be available in the

future.

2.2.1 Optimal policy

The model is a stochastic dynamic control problem with an infinite number of state variables,

since the agent holds an independent belief about each future value θnt . Despite the infinite

dimensionality of the state space in our model, standard methods based on the Benveniste-

Scheinkman condition (Benveniste & Scheinkman, 1979) yield simple analytic solutions for

the optimal control rule. We state this rule in some detail, as it will help us to interpret the

main results below. From now on we suppress the superscript n time index when there is no

possibility of confusion from doing so. All proofs can be found in the appendices.

Proposition 1. The optimal policy Xn+1 = π(Xn, Y n) is given by

π(X,Y ) = aX +

∞∑
t=0

btµt (11)

where

a =
1 + α(1 + β)−

√
(1 + α(1 + β))2 − 4α2β

2αβ
,

bt =
a

α
(aβ)t .
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It is straightforward to demonstrate the following properties of the coefficients a, bt:

a+
∞∑
t=0

bt = 1

lim
α→0

a = 0, lim
α→∞

a = 1,
∂a

∂α
> 0

lim
α→0

bt =

{
1 t = 0

0 t > 0
, lim
α→∞

bt = 0

∂

∂α

(
bt+1

bt

)
> 0,

∂b0
∂α

< 0.

Proposition 1 shows that the optimal policy function π(X,Y ) chooses the next value of X

to be a convex combination of the current value of X and the expected values of θt. The

policy rule exhibits the certainty equivalence property, i.e., it is independent of the agent’s

uncertainty about future events. This is a well-known consequence of the quadratic payoff

function in our model, which makes the model tractable (e.g. Ljungqvist & Sargent, 2004).

Although the policy rule does not depend on uncertainty, the value function certainly will,

and it is its dependence on the precision profile ~τ that we are ultimately interested in.

The coefficients of the policy rule have an intuitive dependence on the adjustment cost

parameter α. Consider the extreme cases α→ 0, and α→∞. The proposition shows that

lim
α→0

π(X,Y ) = µ0

lim
α→∞

π(X,Y ) = X.

When adjustment costs tend to zero, the policy rule does not depend on either X or µt

for t ≥ 1. This occurs since with costless adjustment the decision problem separates into a

sequence of static optimization problems, and the payoff maximizing choice in each of these

problems is simply to choose X equal to the expected value of the current value of θ̃, i.e.,

µ0. When α → ∞, any change in the value of X is very costly, so the optimal action is

to leave X where it is. In between these extremes the policy rule depends on expectations

about all future values θt. As α increases from zero the decision maker’s choice depends more

on both the inherited value of X, and her expectations about the future. This occurs since

the convexity of adjustment costs penalizes large adjustments later on. Current choices thus

account for both the benefits of adjusting to current conditions and the need to anticipate

future conditions. The larger is α, the more important it is to anticipate future conditions,

and this is reflected in the fact that coefficients bt decrease at a slower rate as α increases. At

the same time, larger α makes adjustments more costly, leading the policy rule to place greater

weight on the inherited value of X. Finally, to understand the finding that a+
∑∞

t=0 bt = 1,

consider the case in which µt = X for all t. In this case the agent believes that her choice
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is perfectly adapted to conditions now and in the future, and she should thus not want to

change X. This occurs if aX +
∑∞

t=0 btX = X.

It will be helpful in what follows to have some quantitative understanding of which values

of α are ‘large’ and ‘small’ in some absolute sense. To benchmark how α affects optimal

policies, consider a deterministic version of the model in which the θ̃n are chosen to be a fixed

sequence of draws from an arbitrary univariate random variable with finite variance. When

α = 0, optimal decisions coincide with the current value of θ̃n, i.e., Xn+1 = µn0 = θ̃n for all

n. As α increases, adjustment becomes more costly, and the optimal values of X fluctuate

less than θ̃ itself. Online Appendix C derives an expression for the asymptotic variance of

the policy choices X as a function of α and β. For a wide range of β, α > 1.5 implies

that the decision maker adjusts to less than 20% of the variability in θ̃, and α > 3 implies

adjustment to less than 10% of the variability. Thus, α = 3 is already a fairly large value of

the adjustment cost parameter. In addition, the appendix demonstrates that changes in α

have a greater effect on behaviour when α is small (e.g. α < 1) than when it is large.

2.2.2 Value function

In order to understand the effect of the precision sequence ~τ on the agent’s expected payoffs, we

need to compute the value function. This would seem to be difficult, as the model’s state space

is infinite dimensional, the period payoff depends non-quadratically6 on the precision state

variables λt, and we need to take expectations of the value function over an infinite sequence

of signals, the distribution of which depends on all the belief state variables. Nevertheless, it is

possible to obtain an analytic expression for the value function, which enables the remainder

of our analysis.

Begin by defining a shift operator ∆ that acts on infinite sequences ~Z = (zt)t≥0 as follows:

∆(~Z) = ∆((z0, z1, z2, . . .)) ≡ (z1, z2, z3, . . .). (12)

Thus ∆ simply deletes the first element of ~Z and shifts all the other elements forward one

position. The belief updating rule (5) for the vector of prior precisions ~λ = (λt)t≥0 can thus

be written as:

F (~λ) = ∆(~λ) + ~τ , (13)

where F (~λ) denotes the ~λ components of the updating rule in (5). Let F (k)(·) be the k-th

6From (2) we have

W (Xn+1, Xn, Y n) = −1

2

[
(1 + α)(Xn+1)2 + α(Xn)2 − 2Xn+1(µn0 + αXn) +

1

λn0
+ (µn0 )2

]
.

One could write this payoff in terms of the variance of the agent’s beliefs about θnt , making it linear in variances,
but then the state equations for the evolution of variances would be nonlinear (see (5)). Standard methods
from linear quadratic control are not applicable.
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iterate of F , and define F kt (~λ) to be the (t + 1)-th element of F (k)(~λ).7 In addition, recall

that bt is the coefficient of µt in the optimal control rule (11). Then,

Proposition 2. The value function V (X,Y ) is given by

V (X,Y ) = T (~τ) + terms independent of ~τ ,

where

T (~τ) = −1

2
b0

[ ∞∑
k=1

βk
∞∑
t=0

(
bt
b0

)2 1

F kt (~λ)

]
(14)

∝ −
[(

1

λ1 + τ1
+ (a2β2)

1

λ2 + τ2
+ (a2β2)2

1

λ3 + τ3
+ . . .

)
+ β

(
1

(λ2 + τ2) + τ1
+ (a2β2)

1

(λ3 + τ3) + τ2
+ (a2β2)2

1

(λ4 + τ4) + τ3
+ . . .

)
+ β2

(
1

(λ3 + τ3 + τ2) + τ1
+ (a2β2)

1

(λ4 + τ4 + τ3) + τ2
+ (a2β2)2

1

(λ5 + τ5 + τ4) + τ3
+ . . .

)
+O(β3)

]
.

To interpret this result notice that the term
∑∞

t=0

(
bt
b0

)2
1

Fkt (
~λ)

in (14) represents the con-

tribution to the value function from the uncertainty the agent faces when she takes a decision

k time steps in the future. 1/F kt (~λ) is the agent’s uncertainty about events that are t time

steps in the future, in period k. The exponentially declining factor (bt/b0)
2 = (a2β2)t cap-

tures the importance of uncertainty about events at temporal distance t for decision-making,

as can be seen from the optimal policy rule (11). T (~τ) is thus the discounted sum of the cost

of uncertainty for each future decision. The forecasting system reduces this uncertainty cost

by providing information about all future periods, in every period. The agent’s uncertainty

about events that are t time steps in the future in a period k time steps from now is reduced

by forecasts of precision τk+t, τk+t−1, . . . , τt.

3 The relative value of short- and long-run predictability

The previous section derived an expression for the decision-maker’s value function for an

arbitrary prediction system that obeys (5). In this section we unpack this result in order to

study the relative importance of short- and long-run predictability. Given prior uncertainty
~λ = (λt)t≥1, the function T (~τ) in Proposition 2 depends on the sequence of forecast precisions

~τ . Our goal now is to understand the dependence of T (~τ) on its arguments. In general this

is a complex task, as T (~τ) is a non-separable function of the individual precisions τm. The

7For example,

F 2(~λ) = F (F (~λ)) = F (∆(~λ) + τ) = ∆(∆(~λ) + ~τ) + ~τ = ∆2(~λ) + ∆(~τ) + ~τ.

Thus say F 2
0 (~λ) = λ2 + τ2 + τ1, where it is important to recall that ~τ = (τ1, τ2, . . .).
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following subsections consider different methods for extracting the information T (~τ) contains

about the relative importance of predictability at different lead times.

3.1 Marginal predictability

To make initial progress we begin by finding a linear approximation to T (~τ) at ~τ = ~0.

This approximation will only be accurate when forecast precisions are marginal. Studying

a linearized version of T (~τ) has two purposes. First, the linear approximation to T (~τ) is

a separable function of ~τ , allowing the contribution of each τm to the value function to

be computed easily in this case. This allows us to form clear intuition for the effects that

determine the relative importance of different lead times, to first order. Second, and more

importantly, in this approximation all interactions between forecast lead times are neglected.

Since we expect the interesting effects in the model to be a consequence of the sequential

updating of forecasts, which allow short-run predictability to partially substitute for long-

run predictability, it is useful to first examine a baseline case in which those substitution

effects (i.e., interactions between lead times) are effectively switched off. This will allow us to

demonstrate later on how accounting for interactions between lead times alters the relative

importance of short- and long-run predictability.

Begin by defining the function

g(m) ≡
∞∑
l=0

βl

λ2m+l

, (15)

and assuming that

lim
l→∞

λ2l+1

λ2l
> β, (16)

implying that g(m) is finite for all m (by the ratio test). Then,

Proposition 3. If the interactions between forecast lead times are neglected, the increase in

the value function due to the prediction system is (to first order)

dV = T (d~τ)− T (~0) ≈ a

α(1− a2β)

∞∑
m=1

rmdτm, (17)

where

rm ≡ g(m)βm
(
1− (a2β)m

)
. (18)

To understand the intuition behind this result we now derive it heuristically. Recall that

the agent receives a forecast of lead time m in every period. The effect of the forecast the

agent receives in the current period is to reduce uncertainty about events at temporal distance

m. But, in doing so, this forecast gives rise to a cascade of uncertainty reductions at shorter

lead times in future periods. This occurs since a reduction in uncertainty about lead time
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m events in the current period is equivalent to a reduction in uncertainty about events at

lead time m − 1 in the next period, and lead time m − 2 in the period after that, etc. As

(14) makes clear, the value of a reduction in uncertainty about events t time steps in the

future is proportional to (bt/b0)
2 = (a2β2)t. Since uncertainty reductions in future periods

are discounted, a marginal unit of precision in the first forecast of lead time m that the agent

receives increases payoffs by an amount proportional to

m−1∑
t=0

βm−t(a2β2)t = βm
m−1∑
t=0

(a2β)t.

Because a marginal increase in the precision of forecasts of lead time m increases payoffs in

proportion to d
dλm

(−1/λm) = 1/λ2m, the total effect of the first forecast of lead time m is to

increase payoffs by an amount proportional to

1

λ2m
βm

m−1∑
t=0

(a2β)t.

This quantity accounts for the uncertainty reduction effect of the first forecast of lead time m,

which the agent receives at the end of the current period. At the end of the next period, the

agent receives another forecast of lead time m. This forecast gives rise to the same cascade of

uncertainty reductions, and has the same value as the initial forecast, up to a normalization.

The normalization is simply the discounted value of the change in lead time m uncertainty

that the agent faces in the next period, i.e., β 1
λ2
m+1

. This occurs in all future periods. Thus,

the total value of a marginal unit of precision in forecasts of lead time m is proportional to:

1

λ2m

(
βm

m−1∑
t=0

(a2β)t

)
+

β

λ2m+1

(
βm

m−1∑
t=0

(a2β)t

)
+

β2

λ2m+2

(
βm

m−1∑
t=0

(a2β)t

)
+ . . .

∝

( ∞∑
l=0

βl

λ2m+l

)
βm
(
1− (a2β)m

)
This is exactly the expression we obtained in (18). Notice how the derivation of this expression

makes it clear that sequential updating of forecasts is not a major determinant of the value

of a marginal unit of predictability. The fact that forecasts are updated sequentially gives

rise to the factor

(∑∞
l=0

βl

λ2
m+l

)
= g(m) in (18), but if only a single marginal forecast of lead

time m were received in the first period, the expression in (18) would look very similar, with

this factor simply replaced by 1
λ2
m

. Thus, neglecting the interactions between lead times is

qualitatively similar to neglecting sequential forecast updating itself (we make this analogy

exact in a special case below).

Equation (18) makes it clear that the dependence of prior uncertainty on lead time can

have an important influence on the value of marginal predictability at different lead times
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through the function g(m). To understand these effects in a parsimonious way we will focus

on a simple parametric model of prior beliefs. We suppose that the precisions of prior beliefs

about the locations of θt are given by,

(λt)
2 = φt(λ0)

2 + (1− φt)(λ∞)2, (19)

where φ ∈ (0, 1], and 0 < (λ∞)2 < (λ0)
2. In this model the squared precision of prior beliefs

about events decays geometrically from (λ0)
2 for the current period to (λ∞)2 for events in the

infinite future. It is straightforward to verify that (16) is always satisfied in this case as long

as λ∞ > 0. Moreover, notice that if beliefs about the infinitely distant future are arbitrarily

uncertain, i.e., (λ∞)2 → 0, we have

lim
(λ∞)2→0+

g(m)

g(1)
= lim

(λ∞)2→0+

∑∞
l=0

βl

(λm+l)2∑∞
l=0

βl

(λ1+l)2

= lim
(λ∞)2→0+

∑∞
l=0

βl

φm+l(λ0)2+(1−φm+l)(λ∞)2∑∞
l=0

βl

φ1+l(λ0)2+(1−φ1+l)(λ∞)2

=

(
1

φ

)m−1
.

(20)

Thus in this (not implausible) limit the ratio g(m)/g(1) takes an especially simple form. The

limiting ratio in (20) is well defined for all φ ∈ (0, 1], even though g(m) itself diverges if

(λ∞)2 = 0 and φ < β.

In the limit as (λ∞)2 → 0, we can thus define a simple measure of the value of a unit

of predictability about events at distance m, relative to the value of a unit of predictability

about events at distance 1:

Rm ≡
rm
r1

= βm−1︸ ︷︷ ︸
Discounting

(
1

φ

)m−1
︸ ︷︷ ︸

Uncertainty

[
1− (a2β)m

1− a2β

]
︸ ︷︷ ︸
Early warning

. (21)

Using this expression, the relative value of the predictability of events at different lead times

may be computed as a function of the three parameters α, β and φ. These parameters char-

acterize the decision-maker’s flexibility, impatience, and prior uncertainty about the future

respectively. Aside from being simple to analyze, the choice of priors in (19) makes the for-

mulas for rm/r1 for updating from a single forecast vs. updating from sequential forecasts

coincide exactly in the limit as (λ∞)2 → 0, since 1/(λm)2

1/(λ1)2
= g(m)/g(1) in this case. To a first

approximation there is thus no difference between once-off and sequential forecasting in this

model of priors. This is thus an especially good baseline from which to assess how account-

ing for the interactions between lead times alters the balance between short- and long-run

predictability.

The formula (21) shows that there are three effects that determine the relative value of

marginal predictability at different lead times. First, since forecasts at larger lead times relate

to more distant payoffs, they are more heavily discounted. This gives rise to the first term
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in (21), which is decreasing in m. Second, since the prior precision of beliefs is smaller for

larger lead times (i.e., uncertainty increases with the time horizon), and payoffs are concave

in precisions, the effect of a marginal increase in the precision of beliefs is increasing in lead

times. This leads to the second term in (21), which is increasing in m, reflecting the fact

that the long-run is more uncertain than the short-run. Finally, the third term captures the

cumulative effect of an early warning about events at lead time m on all subsequent decisions

that are made until that event is realized. Since warnings of lead time m give rise to improved

decision-making for m− 1 subsequent adjustment decisions, longer lead times are associated

with greater cost savings. Thus the third term in (21) is increasing in m, reflecting the fact

that earlier warnings give rise to cheaper adjustments (since adjustment costs are convex). It

is moreover straightforward to verify that

∂2

∂α∂m

[
1− (a2β)m

1− a2β

]
> 0

when m ≥ 1. Thus, the larger are adjustment costs α, the faster the third term in (21)

increases with m. This is intuitive, since the more costly adjustments are, the more important

it is to get early warning of the need for them (again due to convexity). This term thus

demonstrates how our assumption of convex adjustment costs favours long-run predictions.8

The overall dependence of Rm on m depends on the relative rates of increase and decrease

of the three terms in (21). Some simple analysis (see Online Appendix F) shows that Rm

can exhibit only three kinds of qualitative behaviour. First, if φ ≤ β, Rm is an increasing

function of m. In this case, the benefits of reducing large long-run uncertainties outweigh

the effects of discounting, making long-run predictability more important than short-run

predictability (when interactions between lead times are neglected). If φ > β, Rm either

decreases monotonically with m or is a unimodal function with a global maximum at some

m ≥ 2. Online Appendix F characterizes the regions of parameter space where these two

qualitative behaviours occur. In general, when β is sufficiently small, Rm will be declining in

m for all values of α. However, when β exceeds some critical value β̂, there exists an α̂ > 0

such that for all α > α̂ Rm is unimodal. Analytic expressions for β̂ and α̂ show that the

faster prior uncertainty increases with lead time (i.e., the lower is φ), the lower are β̂ and α̂.

Figure 2 plots Rm for several values of the parameters.

8By contrast, linear adjustment costs give rise to no incentive to anticipate future changes in the environment
(since rapid and gradual adjustments of equal magnitude are equally costly in this case) – in this case short-run
predictions can substitute perfectly for long-run predictions (see Costello et al., 2001). Concave costs (including
fixed costs) would give rise to lumpy optimal adjustments in which activities are only adjusted infrequently
when the marginal benefit of adjustment is believed to exceed its marginal cost (which is high for small
adjustments). In this case the agent obtains no cost savings from gradualism, and thus has less opportunity
to exploit early warnings. Since adjustment occurs only infrequently in this case, intuition suggests that
discounting will be the dominant determinant of the relative value of predictability at different lead times.
Tractability issues prevent us from handling concave costs formally in this model, but this may be an interesting
avenue for future research.
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Figure 2: Typical dependence of Rm on adjustment costs (α) and prior uncertainty (φ).
β = 0.95 in these examples.

Taken at face value, the first order analysis in this sub-section would seem to suggest that

long-run predictability is often significantly more important than short-run predictability.

When φ < β in (21), i.e., when the long-run is significantly more uncertain than the short

run, the analysis of Rm suggests that long-run predictability has a greater effect on discounted

expected payoffs than short-run predictability, regardless of the adjustment cost parameter

α. Moreover, even when φ > β it is possible to find values of the parameters for which Rm

increases for a long time, before declining.9 However, as we have emphasized, the first-order

analysis largely neglects the dynamic nature of decision-making; it does not account for the

interactions between lead-times, and thus cannot reflect the substitution possibilities that are

9If Rm is unimodal, its maximum occurs at one of the two integers closest to

m∗ =
ln
(

ln(β/φ)

ln(a2β2/φ)

)
ln(a2β)

.

It is straightforward to show that ∂m∗

∂α
> 0, ∂m

∗

∂β
> 0 and ∂m∗

∂φ
< 0. Moreover m∗ diverges as φ → β+, and

may be very large when φ is close to β.
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a consequence of sequential forecast updating. This analysis thus defines a naive baseline that

is conceptually similar to a conflation of the presence of long-run uncertainty with the need

for long-run predictions.

3.2 Accounting for interactions

In this section we move beyond first-order results, aiming to summarize the dependence of

T (~τ) on ~τ in a manner that accounts for the interactions between lead times. It is intuitively

clear that these interactions are important determinants of the overall value of a prediction

system. If we are able to predict events at lead time m very accurately, the value of an

improvement in the predictability of events at lead time m + 1 must surely be quite low.

Indeed, inspection of the expression for T (~τ) in (14) shows that for any positive integers m, k,

∂T

∂τm
> 0,

∂2T

∂τm∂τk
< 0.

Thus, predictabilities at different lead times are substitutes. Since T (~τ) is a non-separable

function of the infinite sequence of parameters ~τ = (τm)m≥1, there is no unique way of

computing the contribution of each individual τm to the value function. We will focus on a

measure of the importance of different lead times that we find especially intuitive.

In order to summarize the dependence of T (~τ) on its arguments we imagine that the

decision-maker has a hypothetical total predictability budget B =
∑∞

m=1 τm, and study how

she would like this budget to be allocated between lead times. The budget share allocated to

each lead time captures its importance in a manner that accounts for interactions. We empha-

size that the predictability budget B is a purely hypothetical construct; it does not represent

the costs of increasing predictability, which are very likely to vary by lead time. Rather,

B is merely a mathematical device that allows us to summarize the relative importance of

predictability at different lead times in the value function. As in the rest of the value of

information literature, our focus throughout the paper is on the benefit side of predictability.

Formally, we are interested in computing the following quantity:

~σ ≡ 1

B

(
argmax~τ T (~τ) s.t.

∞∑
m=1

τm = B

)
. (22)

The m-th component of ~σ, denoted σm, is the share of the total predictability budget B that

the agent would like to allocate to lead time m. By definition, σm ∈ [0, 1] for all m, and∑∞
m=1 σm = 1. We prove that the optimization problem in (22) has a unique solution in the

Online Appendix. Although it is not possible to solve for ~σ analytically, it is straightforward to

find an arbitrarily good approximation to the solution using standard numerical optimization

routines.

In general ~σ depends on the vector of prior precisions ~λ. To maintain consistency with
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the marginal analysis of the previous section, we assume that λt = φt/2λ0, corresponding

to the (λ∞)2 → 0 limit of (19). The relative importance of prior beliefs and predictions in

determining the expectations that enter the value function is captured by the ratio λ0/B.

To see this, notice from (14) that the optimization problem in (22) is equivalent to finding a

sequence of values ~σ that maximizes

− 1

B

[(
1

λ0
B φ

1/2 + σ1
+ (a2β2)

1
λ0
B φ

2/2 + σ2
+ (a2β2)2

1
λ0
B φ

3/2 + σ3
+ . . .

)

+ β

(
1

(λ0
B φ

2/2 + σ2) + σ1
+ (a2β2)

1

(λ0
B φ

3/2 + σ3) + σ2
+ (a2β2)2

1

(λ0
B φ

4/2 + σ4) + σ3
+ . . .

)
+O(β2)

]
,

subject to
∑

m σm = 1. When λ0/B � 1, predictions are highly non-marginal relative to

the prior, and dominate the value function. Interactions between forecast lead times will be

most important in this case. By contrast, when λ0/B � 1 predictions are marginal relative

to the prior, and interactions between lead times are of second order importance. So what

is a reasonable value of λ0/B? It is clear that if we want to study substitution between lead

times we must not choose λ0/B to be too large. On the other hand, if λ0/B is very small

the prior plays no role in the analysis. This case is of interest (see below), but we would

also like to investigate the role of the prior, so we cannot only choose small values for λ0/B.

In practice, we would expect forecast errors to be roughly comparable to prior uncertainty.

Indeed, for many phenomena forecasts themselves are responsible for forming our priors. We

will thus initially work with a conservative representative value of λ0/B = 1. Note that this

implies that the sum of forecast precisions over all lead times is comparable in size to the

precision of our beliefs about the current period. Almost all σm are thus small relative to

λ0/B. Indeed, the importance of the prior is likely overestimated in this parameterization.

Online Appendix H contains a sensitivity analysis and discussion of the cases where λ0/B � 1

and λ0/B � 1. Figure 3 demonstrates the typical dependence of ~σ on adjustment costs α

and prior uncertainty φ when λ0/B = 1.

The results in Figure 3 depend on the choice of time step, which we can interpret as 1 year

in this example. Decisions and beliefs are thus interpreted as updating annually (consider

climate change adaptation, for example), and the agent’s real discount rate is approximately

5%/yr when β = 0.95.10 Several features of the figure deserve highlighting. First, the budget

allocations in this figure tell a very different story from the marginal analysis in Figure

2. Even when φ < β (i.e., the top panel in Fig. 3) so that the long run is significantly

10If we change the model’s time step from ∆t to ∆t′ = k∆t for k > 0, the model parameters change to
β′ = βk, φ′ = φk, B′ = B/k. The last of these transformations follows from the fact that 1/τm measures the
quantity of new information the agent receives about events at distance m∆t per unit time. If we halve the
time step to six months, for example, the agent should receive half as much information about future events,
every six months. The change in the precision of beliefs about lead time m∆t events from each forecast is τm

∆t
.

Thus if the total predictability budget in (22) is B =
∑
m
τm
∆t

when the time step is ∆t, this is equivalent to a
budget of B/k when the time step is ∆t′.
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Figure 3: Budget share σm allocated to lead time m in the optimization problem in (22).
β = 0.95, λ0

B = 1.

more uncertain than the short run, the decision-maker would like to allocate most of her

predictability budget to short lead times, i.e., 1-4 time steps ahead. By contrast, the analysis

in Fig. 2 showed that the value of a marginal unit of predictability is increasing in lead time

when φ < β; at face value this would seem to suggest that the decision-maker should allocate

her entire budget to long-run prediction. The results in Fig. 3 are very different, because
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~σ accounts for the substitution possibilities between lead times that arise from sequential

forecast updating. These substitution effects favour the short-run because accurate short-run

forecasts can compensate for any errors in long-run forecasts once the long-run events in

question come nearer to the present, in addition to providing information about current near-

term conditions. If adjustment is highly costly (i.e., α is large) it is clearly more costly to react

to short-run warnings, and accurate early warnings become more important. This is reflected

in the fact that ~σ places larger weight on long lead times as α increases. However, perhaps

surprisingly, even for large values of α substitution effects cause the agent to allocate very

small budget shares to lead times larger than 10 times steps. The presence of predictability

at these shorter lead times renders long-run predictability essentially irrelevant. Fig. 3 also

shows that prior uncertainty does not have nearly as large an effect on how the decision-maker

would like to allocate her predictability budget as the marginal analysis suggested it might.

The two panels of Fig. 3, which correspond to values of φ below and above β respectively,

differ in their details, with lower values of φ (i.e., greater long-run uncertainty) giving rise

to greater weight on longer lead times. But in both cases very little weight is given to long

lead times. In contrast, the marginal analysis suggested that these cases should give rise to

very different behaviour, with long-run forecasts always being more valuable than short-run

forecasts when φ < β. This indicates that substitution effects dominate the role of the prior

in determining the budget allocation, despite the precision of the prior being comparable to

or greater than that of predictions.

While Fig. 3 pertains to the baseline case λ0/B = 1, it is also interesting to examine

~σ when λ0/B → 0. In this limit the agent’s beliefs about all future periods are entirely

determined by the prediction system, the prior plays no role. In this case ~σ captures the

‘pure’ effects of substitution between lead times, unadulterated by the prior (which favours

long lead times). Results for this case are depicted in Fig. 4 when the agent’s discount factor

β → 1, i.e., in the case that is most generous to long-run forecasts. This figure demonstrates

how substitution between lead times can lead the decision-maker to place most of her budget

on short run predictability, even when she is very far-sighted and adjustment costs are large.

An equivalent figure for the lower value β = 0.95 is available in the Online Appendix; short-

run forecasts are of course substantially more strongly favored in this case.

4 Conclusions

We have developed a simple analytical model that allows us to compute decision-makers’

induced preferences over prediction systems with different profiles of accuracy as a function

of lead time. Valuing prediction systems correctly requires an explicitly dynamic model that

accounts for the fact that forecasts of events at different temporal distance have different

accuracies, and that agents may adapt their decisions to new information as forecasts are
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Figure 4: Budget share σm allocated to lead time m in the optimisation problem in (22),
when β → 1, λ0

B → 0. This figure illustrates the ‘pure’ effect of substitution between lead
times when priors play no role in the analysis, and in the case that is most generous towards
long-run forecasts, i.e., β → 1.

updated over time. The essential novel feature of our model is that it disentangles the pre-

dictability of events at different temporal distances, allowing us to compute the contribution

of predictive accuracy at each lead time to the overall value of a forecasting product in a

simple and tractable manner. This enables a study of the relative importance of short- and

long-run predictability that is, we believe, novel in the literature.

Our results point to potentially important lessons for decision-makers, and for efforts to

improve the social value of forecasts. As observed in the introduction, it is not uncommon

to find the presence of long-run uncertainty conflated with a need for long-run predictability

in policy circles. In general however this is a logical fallacy, as it neglects decision-makers’

abilities to adjust activities over time in response to updated forecasts. Our analysis suggests

that if adjustments in response to sequential forecast updates are accounted for, short-run

predictability is often more valuable than long-run predictability, even if adjustment costs

and long-run uncertainty are large. It is perhaps surprising just how effectively short-run

predictability can substitute for long-run predictability in our model, as the convexity of
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adjustment costs would seem to imply that accurate long-run forecasts would give rise to

significant cost savings when adjustment costs are large. The fact that this result would be

difficult to guess a priori (at least for us) points to the necessity of modeling approaches

that aim to disentangle the contribution of predictions at each lead time to the overall value

of forecasts. Such models could also provide forecast producers with valuable information

about where they should focus their efforts at forecast improvement. While improvements

in long-run predictions often require new scientific approaches that reduce model misspecifi-

cation errors, short-run predictions can often be substantially improved by simply reducing

measurement errors in initial conditions (i.e., increasing the quality of observations). Our

results suggest that the latter activity may carry significant value for decision-makers con-

cerned with adapting to long-run changes, even though such improvements will yield little

new information about long-run conditions.

Although we believe that our model provides important conceptual insights into the de-

terminants of rational demand for predictability at different lead times, it is clearly limited in

some respects. The modelling exercise is made possible by judicious assumptions which render

an otherwise impossibly complex infinite dimensional stochastic control problem analytically

solvable. We highlight three of these assumptions here.

First, the model relies on a location-independent quadratic loss function. It is clear that if

some states of the world are intrinsically more valuable than others, information about these

states will be of greater importance. Since our model assumes a payoff function that penalizes

actions purely according to their distance from a state-dependent optimal choice, the costs of

a maladapted choice do not depend on the state of the world. It is therefore best to think of

our results as defining a symmetric baseline case in which the ability of the decision-maker to

adapt to her environment is not state-contingent. We believe that this captures the essence

of the problems we are interested in, but extensions to asymmetric loss functions, and more

complex adjustment costs, would naturally be of interest, although we expect them to face

analytical difficulties in the current framework.

Second, as in the rest of the value of information literature, our model focuses on a

decision-maker who faces an exogenously changing environment. Thus, its conceptual lessons

apply to e.g. individuals and firms, but less to large entities whose actions may strongly affect

the uncertainties in their operating environments. For example, we feel that the model is a

fair abstract representation of the problem of adapting to climate change at the local level,

but not of mitigating climate change at the global level. In the latter case actions the world

takes to reduce greenhouse gas emissions clearly affect uncertainties, whereas in the former

any small country or firm may reasonably take changes in the climate as exogenous to its own

activities.

Third, the model does not consider serially correlated environments. While we have

opted for analytical and conceptual clarity over empirical comprehensiveness on this front,
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it is clearly of interest to study models that admit such correlations, but nevertheless allow

predictability at different lead times to be disentangled, in future work.
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A A microeconomic interpretation of the model

Here we provide an interpretation of our model in a familiar microeconomic setting. Con-

sider a competitive firm that produces a quantity qt of product at time n, and faces linear

marginal costs of production C ′(q) = c0 + c1q. The firm faces uncertain prices (pt)t≥0 in

the future, and quadratic adjustment costs k(qt − qt−1)2. These costs are a reduced form

representation of costs sustained due to rejigging operations at the intensive and extensive

margins. Small changes in production are handled at the intensive margin, and are thus

cheap – current employees work longer/shorter hours, installed capital is used more/less

intensively, and orders from existing suppliers are tweaked to meet small fluctuations in

demand. However, large changes in production require extensive margin changes – large

numbers of new employees must be hired/fired, new machinery must be bought or rented,

and new suppliers found and terms negotiated. The form of our adjustment costs amounts

to assuming that extensive margin adjustments are cheaper if done in a planned sequence

of steps, rather than in an abrupt transition. There are several reasons why this might be.

With early warning the firm could find creative ways of adapting its existing resources to

new market conditions. Early warning may also place the firm in a stronger negotiating

position with respect to employment and supply contracts (because of the lack of urgency),

and could reduce the opportunity costs associated with under/over capacity. Quadratic

adjustment costs are an analytically convenient reduced form way of representing these

inertial forces on adjustment.

Since the firm takes prices pt as given, its instantaneous profit function can be written

as:

Πt = ptqt − (c0qt +
1

2
c1q

2
t )− k(qt − qt−1)2

= −c1

2
(qt − θt)2 − k(qt − qt−1)2 +Mt

where θt = (pt − c0)/c1, and Mt is a decision irrelevant constant, which may be neglected

when computing the value of information about the sequence of values (θt)t≥0. Thus the

firm’s profit function is of the form (2), up to an irrelevant factor of c1.
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B Proof of Proposition 1

We use the Bellman equation (10) to solve for the optimal policy function Xn+1 =

π(Xn, Y n). When referring to functions and operations on functions, we will adopt a

notation in which primed variables denote next period quantities, and unprimed variables

denote current period quantities, i.e., W = W (X ′, X, Y ) and V = V (X, Y ). So ∂W
∂X′ , for

example, refers to the function whose value is the partial derivative of W with respect to

its first argument, i.e., the next period value of X. When we evaluate functions and their

derivatives at specific times, we will still use e.g. Xn, Xn+1 to denote function arguments.

Thus ∂W
∂X′ (X

n+1, Xn, Y n) is the partial derivative of W with respect to its first argument,

evaluated at (Xn+1, Xn, Y n). With this notation, the first order condition for Xn+1 is

∂W

∂X ′
(π(Xn, Y n), Xn, Y n) + β

∫
R∞

∂V

∂X
(π(Xn, Y n), F (Y n, Sn))Q(Sn;Y n)dSn = 0. (A.1)

By the envelope theorem,

∂V

∂X
(Xn, Y n) =

∂W

∂X
(π(Xn, Y n), Xn, Y n). (A.2)

From (2), and (A.2) evaluated at time n+ 1, we have

∂W

∂X ′
(π(Xn, Y n), Xn, Y n) = µ0 + αXn − (1 + α)π(Xn, Y n)

∂V

∂X
(π(Xn, Y n), F (Y n, Sn)) =

∂W

∂X
(π(π(Xn, Y n), F (Y n, Sn)), π(Xn, Y n), F (Yn, S

n))

= α(X ′ −X)|X′=π(π(Xn,Y n),F (Y n,Sn)),X=π(Xn,Y n)

= α(π(π(Xn, Y n), F (Y n, Sn))− π(Xn, Y n)).

Substituting into (A.1), we find that the policy rule must satisfy

µn0 +αXn−(1+α)π(Xn, Y n)+β

∫
R∞

[α(π(π(Xn, Y n), F (Y n, Sn))− π(Xn, Y n))]Q(Sn;Y n)dSn = 0.

(A.3)

We solve this equation by the ‘guess and verify’ method. The certainty equivalence property

of the quadratic control problem suggests that we should look for a control rule of the form

π(X, Y ) = aX +
∞∑
t=0

btµt

3



where the coefficients (a, (bt)t≥0) are to be determined. Plugging this guess into (A.3), and

now suppressing the index n, we find:

[µ0 + αX − (1 + α)(aX +
∞∑
t=0

btµt)]+

βα

[∫
R∞

(
a(aX +

∞∑
t=0

btµt) +
∞∑
t=0

btµ
′
t(st+1)− (aX +

∞∑
t=0

btµt)

)
Q(S, Y )dS

]
= 0

where µ′t(st+1) is the next period value of µt conditional on receiving a signal st+1, given

by (5). Since Estµ
′
t(st+1) = µt+1, we can simplify this to:

µ0 + αX − (1 + α)(aX +
∞∑
t=0

btµt)+

β[αa2X + aα
∞∑
t=0

btµt + α
∞∑
t=0

btµt+1 − aαX − α
∑
t

btµt] = 0.

Since this equation must hold for all values of X,µt, we must equate the coefficients of

each state variable to zero. The equation for the coefficient of X is:

αβa2 − (1 + α(1 + β))a+ α = 0 (A.4)

⇒a =
1 + α(1 + β)±

√
(1 + α(1 + β))2 − 4α2β

2αβ
(A.5)

To pick the correct root, note that if α→ 0, the policy rule should reduce to

π(X, Y ) = µ0.

This follows since when adjustment is costless, the optimal policy simply maximizes period

payoffs. For the positive root we have

lim
α→0

a(α)→∞,

thus giving incorrect behaviour. By contrast, we show below that the correct behaviour is

obtained if we select the negative root. Thus we conclude that

a = a(α, β) =
1 + α(1 + β)−

√
(1 + α(1 + β))2 − 4α2β

2αβ
(A.6)
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The equation for b0 is:

1− (1 + α)b0 + aβαb0 − αβb0 = 0

⇒b0 =
1

1 + α + αβ(1− a)
. (A.7)

For t ≥ 1, the equation for bt is:

− (1 + α)bt + aβαbt + αβbt−1 − αβbt = 0

⇒bt =
αβ

1 + α + αβ(1− a)
bt−1.

Thus for all t ≥ 0,

bt =
1

1 + α + αβ(1− a)

[
αβ

1 + α + αβ(1− a)

]t
(A.8)

We can simplify this further by using the equation for a in (A.4). Define

Λ ≡ 1 + α + αβ(1− a) (A.9)

From (A.4) we have

(αβ)a2 − (1 + α(1 + β))a+ α = 0

Now

1 + α(1 + β) = Λ + αβa

⇒ (αβ)a2 − (Λ + αβa)a+ α = 0

⇒ Λ =
α

a
.

Thus

bt =
a

α
(aβ)t . (A.10)

We now prove the properties of the coefficients a, bt, stated below the proposition:

1. limα→0 a(α, β) = 0

Use l’Hopital’s rule: differentiate the numerator and denominator of a with respect
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to α, and evaluate the limit of each as α→ 0:

lim
α→0

a(α, β) =
1 + β − 1

2×1
(2× 1× (1 + β)− 0)

2β

= 0.

2. limα→∞ a(α, β) = 1:

lim
α→∞

a(α, β) =
1 + β

2β
− 1− β

2β

= 1.

3. ∂a
∂α
> 0.

From (A.6) we have

∂a

∂α
= −1

2

−αβ +
√
α2(1− β)2 + 2α(1 + β) + 1− α− 1

α2β
√
α2(1− β)2 + 2α(1 + β) + 1

. (A.11)

Hence, ∂a
∂α
> 0 iff

− αβ +
√
α2(1− β)2 + 2α(1 + β) + 1− α− 1 < 0

⇐⇒
√
α2(1− β)2 + 2α(1 + β) + 1 < 1 + α + αβ

⇐⇒ α2(1− β)2 + 2α(1 + β) + 1 < α2(1 + β)2 + 2α(1 + β) + 1

which is obviously satisfied for all α > 0, β ∈ (0, 1).

4. a+
∑∞

t=0 bt = 1.

From the previous calculations we know that a ∈ [0, 1]⇒ aβ ∈ [0, 1]. It follows from

(A.10) that

a+
∞∑
t=0

bt − 1 = a+
a

α

1

1− aβ
− 1

=
−αβa2 + a(1 + α(1 + β))− α

α(1− aβ)

= 0
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where the last equality follows from the defining equation for a in (A.4).

5. ∂
∂α

(bt+1/bt) > 0, ∂b0
∂α

< 0.

Since a +
∑∞

t=0 bt = 1, and a is increasing in α, we know that
∑∞

t=0 bt must be

decreasing in α. From (A.10) we see that

bt+1

bt
= aβ

and hence this ratio is increasing in α. Since bt declines more slowly as α increases,

it must be the case that ∂b0
∂α

< 0 in order to ensure that
∑∞

t=0 bt is decreasing in α.

C Illustration of the dependence of optimal policies

on adjustment costs α.

To illustrate how the adjustment cost parameter α affects decisions quantitatively, consider

a deterministic version of the model in which the values θ̃n are chosen be a fixed sequence of

draws from an arbitrary univariate random variable with finite variance σ2. When α = 0,

optimal decisions coincide with the current value of θ̃n, i.e., Xn = µn0 = θ̃n for all n. As

α increases, adjustment becomes more costly, and the values of Xn fluctuate less than θ̃n

itself. Using the formula (11) and some simple ergodic arguments one can show that

lim
n→∞

Var(Xn, Xn+1, . . .) =

∑∞
t=0 b

2
t

1− a2
σ2

=

[( a
α

)2 1

(1− a2)(1− a2β2)

]
σ2

for arbitrary initial condition X0. Figure F.1 plots the asymptotic variance of the sequence

of decisions as a function of α for several β. The figure illustrates how α controls the

magnitude of the adjustments the decision-maker makes to adapt to fluctuations in a

stationary environment. For a wide range of β, α > 1.5 implies that the decision maker

adjusts to less than 20% of the variability in θ̃, and α > 3 implies adjustment to less than

10% of the variability. In addition, changes in α have a greater effect on behaviour when

α is small (e.g. α < 1) than when it is large.
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Figure F.1: Asymptotic variability of the decision variable X relative to the variability of
the loss-minimizing decisions θ̃, assuming that the values of θ̃n are deterministic and given
by a fixed sequence of draws from a random variable with variance σ2.

D Proof of Proposition 2

As in the derivation of the optimal policy function, we use the ‘guess and verify’ method.

Begin by guessing that the value function has the form

V (X, Y ) = kX2 +
∞∑
t=0

ctµtX +
∞∑
t=0

∞∑
p=t+1

Dt,pµtµp +
∞∑
t=0

dtµ
2
t +

∞∑
t=0

∞∑
i=0

fi,t
λt + hi,t

. (A.12)

All except the last term of this expression are straightforward to guess simply by inspection

of the formula for the period payoff in (2). The last term will however be the most

important, as it will turn out that this is the only term that depends on the precision

sequence ~τ = (τt)t≥1.

Consider the quadratic terms in this guess of the form µtµp. We are going to need to

know how these will transform under the updating rule (5) and after the expectation over

signal realizations has been applied. Letting a prime denote the next period value of a
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variable, we are interested in computing expectations of the form

ESµ
′
tµ
′
p = Est+1,sp+1µ

′
t(st+1)µ′p(sp+1)

where signals are distributed according to the agents’ current posterior predictive distri-

bution, given by (7). Recall that

µ′t(st+1) =
τt+1

τt+1 + λt+1

st+1 +
λt+1

τt+1 + λt+1

µt+1

When t 6= p, we can immediately write down the answer, as means are martingales, and

signals are independent:

Est+1,sp+1µ
′
t(st+1)µ′p(sp+1) = µt+1µp+1

For t = p however, things are different:

Est+1µ
′
t(st+1)µ′t(st+1) = Est+1

[
τt+1

τt+1 + λt+1

st+1 +
λt+1

τt+1 + λt+1

µt+1

]2

Consider the quadratic term in st+1 in this expression:

Est+1

(
τt+1

τt+1 + λt+1

)2

s2
t+1 =

(
τt+1

τt+1 + λt+1

)2

[Var(st+1) + µ2
t+1]

=

(
τt+1

τt+1 + λt+1

)2

[
λt+1 + τt+1

λt+1τt+1

+ µ2
t+1]

=
τt+1

λt+1(λt+1 + τt+1)
+

(
τt+1

τt+1 + λt+1

)2

µ2
t+1

When we combine this expression with the other terms in the expression for Est+1µ
′
t(st+1)µ′t(st+1),

the factor in front of µ2
t+1 in the second term will cancel to 1 (as occurs in the case t 6= p),

and we are left with

Est+1µ
′
t(st+1)µ′t(st+1) =

τt+1

λt+1(λt+1 + τt+1)
+ µ2

t+1. (A.13)

Hence, in summary:

Est+1,sp+1µ
′
t(st+1)µ′p(sp+1) =

{
µt+1µp+1 t 6= p
τt+1

λt+1(λt+1+τt+1)
+ µ2

t+1 t = p.
(A.14)
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It will be more convenient in what follows to write the terms that depend on λt+1 is this

expression as
τt+1

λt+1(λt+1 + τt+1)
=

1

λt+1

− 1

λt+1 + τt+1

. (A.15)

We now want to write down the Bellman equation for our assumed functional form for the

value function. The first step is to compute the period payoff:

W (π(X, Y ), X, Y ) = −1

2

[
(1 + α)[π(X, Y )]2 + αX2 − 2π(X, Y )(µ0 + αX) +

1

λ0

+ (µ0)2

]
= −1

2

[
(1 + α)(aX +

∞∑
t=0

btµt)
2 + αX2 − 2(aX +

∞∑
t=0

btµt)(µ0 + αX) +
1

λ0

+ (µ0)2

]

= −1

2

[
(1 + α)(a2X2 + 2aX

∞∑
t=0

btµt +
∞∑
t=0

∞∑
p=t+1

2btbpµtµp +
∞∑
t=0

b2
tµ

2
t ) + αX2

−2aXµ0 − 2aαX2 − 2µ0

∞∑
t=0

btµt − 2αX
∞∑
t=0

btµt + (µ0)2 +
1

λ0

]

We also have

ESV (π(X, Y ), F (Y, S)) = ES

[
k(π(X, Y ))2 +

∞∑
t=0

ctµ
′
t(st+1)π(X, Y ) +

∞∑
t=0

∞∑
p=t+1

Dt,pµ
′
t(st+1)µ′p(sp+1)

+
∞∑
t=0

dt(µ
′
t(st+1))2 +

∞∑
i=0

∞∑
t=0

fi,t
λ′t + hi,t

]

= k[aX +
∑
t

btµt]
2 +

∞∑
t=0

ctµt+1[aX +
∞∑
p=0

bpµp] +
∞∑
t=0

∞∑
p=t+1

Dt,pµt+1µp+1

+
∞∑
t=0

dt(µt+1)2 +
∞∑
t=0

dt

[
1

λt+1

− 1

λt+1 + τt+1

]
+
∞∑
i=0

∞∑
t=0

fi,t
λt+1 + τt+1 + hi,t

We now have expressions for each of the three terms V (X, Y ),W (π(X, Y ), X, Y ),ESV (π(X, Y ), F (Y, S)),

and must choose the free coefficients of the value function so that

V (X, Y ) = W (π(X, Y ), X, Y ) + βESV (π(X, Y ), F (Y, S))

holds as an identity. We begin by focussing on the terms that depend on λt. If we focus

10



just on these terms, the Bellman equation reads

∞∑
i=0

∞∑
t=0

fi,t
λt + hi,t

= −1

2

1

λ0

+ β

(
∞∑
t=0

dt

[
1

λt+1

− 1

λt+1 + τt+1

]
+
∞∑
i=0

∞∑
t=0

fi,t
λt+1 + τt+1 + hi,t

)
(A.16)

We must determine values for the sequences fi,t, hi,t such that this equation holds as an

identity. Since the right hand side of this equation contains terms of the form 1/λt for all

t, we must have terms of this form on the left hand side as well. We thus begin by choosing

h0,t = 0

for all t ≥ 0. Then if (A.16) is to hold as an identity for all λt, τt we require

f0,0 = −1

2
(A.17)

f0,t = βdt−1 for t ≥ 1. (A.18)

Notice that setting h0,t = 0 creates an imbalance of terms of the form

∞∑
t=0

f0,t

λt+1 + τt+1

on the right hand side of the Bellman equation through the last term in (A.16). To correct

this imbalance through terms on the left hand side, we must choose

h1,t = τt

implying in turn that we must choose

f1,0 = 0

f1,t = β[−dt−1 + f0,t−1] for t ≥ 1.

Again we create an imbalance of terms on the right hand side, which we correct by picking

h2,t = τt + h1,t−1 = τt + τt−1

11



and we find that

f2,0 = 0

f2,t = βf1,t−1.

We can complete this imbalance/rebalance procedure indefinitely to solve for all the coef-

ficients fi,t, hi,t. We find:

h0,t = 0; hi,t = τt + hi−1,t−1 i ≥ 1 (A.19)

f0,0 = −1

2
; f0,t = βdt−1 t ≥ 1 (A.20)

f1,0 = 0; f1,t = β[−dt−1 + f0,t−1] t ≥ 1 (A.21)

fi,0 = 0; fi,t = βfi−1,t−1. n ≥ 2, t ≥ 1. (A.22)

It is straightforward to solve the set of recurrence relations for fi,t. It is convenient to write

the solution as an infinite dimensional matrix:

f =



−1
2

βd0 βd1 βd2 βd3 . . .

0 −β(d0 + 1
2
) β(βd0 − d1) β(βd1 − d2) β(βd2 − d3) . . .

0 0 −β2(d0 + 1
2
) β2(βd0 − d1) β2(βd1 − d2) . . .

0 0 0 −β3(d0 + 1
2
) β3(βd0 − d1) . . .

...
...

...
...

... . . .


(A.23)

The i, t entry of this matrix corresponds to fi−1,t−1, i.e., the rows correspond to fixed values

of i, and the columns to fixed values of t, both starting at zero.1

Clearly fi,t = 0 for any i > t. Thus the only parameters hi,t that are relevant have

1Notice that
∑∞
i=0 fi,t = − 1

2β
t. To understand this suppose that τt = 0 for all t, i.e., the agent receives

no forecasts. Then her beliefs will not change over time, and the variance of her beliefs about θ̃n+t will
be the same once time n + t rolls around as they are in the current period n. The contribution of the
variance terms to the value function in this case is thus straightforward to compute, since variance terms
only enter the period payoff through the term − 1

2λ0. Thus, when τt = 0, we should expect the following
term in the value function: − 1

2

∑∞
t=0 β

t 1
λt

. Now when τt = 0 for all t, we have

∞∑
i=0

∞∑
t=0

fi,t
λt + hi,t

=

∞∑
t=0

∑∞
i=0 fi,t
λt

= −1

2

∞∑
t=0

βt
1

λt

as expected.

12



0 ≤ i ≤ t. It is straightforward to solve the recurrence relation (A.19) to find

h0,t = 0

hi,t =
t∑

k=t+1−i

τk, 1 ≤ i ≤ t

The matrix f makes it clear that we will need to understand the parameters dt if we

are to solve for fi,t. We can find these parameters by solving the µ2
t terms of the Bellman

equation. Define

δi,j =

{
1 i = j

0 i 6= j
(A.24)

Then the Bellman equation for the µ2
t terms yields

dt = −1

2
[(α + 1)(bt)

2 + (1− 2b0)δt,0] + β(k(bt)
2 + ct−1bt(1− δt,0) + dt−1(1− δt,0)

=

(
kβ − 1

2
(α + 1)

)
(bt)

2 − 1

2
(1− 2b0)δt,0 + βct−1bt + βdt−1 (A.25)

where d−1 ≡ 0 ≡ c−1. This equation in turn depends on the coefficients of X2 and µtX,

i.e., k and ct. The X2 terms of the Bellman equation give:

k = −1

2
((1 + α)a2 + α− 2aα) + β(ka2)

⇒ k = −1

2

(
(1 + α)a2 + α− 2aα

1− βa2

)
, (A.26)

which is a known quantity. As a check, another way to compute k is to use the envelope

theorem result:

∂V

∂X
= α(π(X, Y )−X)

= α((a− 1)X +
∑
t

btµt)

Integrating this, we should find that

k = α
a− 1

2
.

Using (A.4) it can be shown that these two formulae for k agree, and we thus use the

13



second, simpler, expression.

Equating coefficients of the µtX terms in the Bellman equation gives:

ct = −1

2
((1 + α)2abt − 2aδt,0 − 2αbt) + β(2kabt + act−1(1− δt,0))

= (α− a(1 + α) + 2βka)bt + aδt,0 + aβct−1

Consider the factor in front of bt in this expression. Substituting k = α
2
(a − 1) into this

factor we see that it is equal to

αβa2 − a(1 + α(1 + β)) + α

But from the definition of a in (A.4) this expression is identically zero. Thus ct satisfies

ct = aδt,0 + aβct−1

where c−1 = 0. Thus, we conclude that

ct = a(aβ)t (A.27)

for all t ≥ 0.

Equation (A.25) thus becomes:

dt =

(
αβ

a− 1

2
− 1

2
(α + 1)

)
b2
t +

(
b0 −

1

2

)
δt,0 + (aβ)tbt + βdt−1

= −1

2
(1 + α + αβ(1− a))b2

t + (aβ)tbt + (b0 −
1

2
)δt,0 + βdt−1

From (A.8) and the definition of Λ in (A.9) we have

bt =
1

Λ

(
αβ

Λ

)t
.
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Thus

d0 = −Λ

2
b2

0 + b0 −
1

2

= −Λ

2
(

1

Λ
)2 +

1

Λ
− 1

2

=
1

2
(

1

Λ
− 1)

Also for t ≥ 1:

dt = − 1

2Λ

(
αβ

Λ

)2t

+ (aβ)t
1

Λ

(
αβ

Λ

)t
+ βdt−1

= − 1

2Λ

(
αβ

Λ

)2(
αβ

Λ

)2(t−1)

+
1

Λ

aαβ2

Λ

(
aαβ2

Λ

)t−1

+ βdt−1

This is a non-homogeneous first order difference equation. The solution for t ≥ 1 is

dt = βtd0 −
1

2Λ

(
αβ

Λ

)2 t−1∑
k=0

βt−k−1

(
αβ

Λ

)2k

+
1

Λ

aαβ2

Λ

t−1∑
k=0

βt−k−1

(
aαβ2

Λ

)k
= βtd0 −

1

2Λ

(
αβ

Λ

)2

βt−1

t−1∑
k=0

(
α2β

Λ2

)k
+

1

Λ

aαβ2

Λ
βt−1

t−1∑
k=0

(
aαβ

Λ

)k
= βtd0 −

1

2Λ

(
αβ

Λ

)2

βt−1

(
1− (α2β/Λ2)t

1− α2β/Λ2

)
+

1

Λ

aαβ

Λ
βt

1−
(
aαβ
Λ

)t
1− aαβ

Λ

= βt

(
1

2Λ
− 1

2
− 1

2Λ

α2β

Λ2

(
1− (α2β/Λ2)t

1− α2β/Λ2

)
+

1

Λ

aαβ

Λ

1−
(
aαβ
Λ

)t
1− aαβ

Λ

)

Since Λ = α
a

we see that
α2β

Λ2
=
aαβ

Λ
= a2β.

Thus the solution for dt simplifies to

dt =
1

2
βt
[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)t)

]
. (A.28)

We can use this solution for dt, and the matrix f to find an explicit solution for the
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coefficients fi,t. Let i = t− ν where 1 ≤ ν < t. Then the matrix f shows that

ft−ν,t = βt−ν(βdν−1 − dν)

= βt−ν
[
β

(
1

2
βν−1

[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)ν−1)

])
− 1

2
βν
[
a

α
− 1 +

a

α

a2β

1− a2β
(1− (a2β)ν)

]]
= −1

2
βt−ν

a

α
(aβ)2ν

For t = i ≥ 1, f gives

ft,t = −βt(d0 +
1

2
)

= −βt
[

1

2
(
a

α
− 1) +

1

2

]
= −1

2
βt
a

α
.

Thus we conclude that for any t ≥ 1, 1 ≤ i ≤ t,

fi,t = −1

2

a

α
βi(aβ)2(t−i).

The values of f0,t and fi,0 can be read directly off the matrix f . Summarizing these results,

the terms of interest to us are given by:

T (~τ) =
∞∑
t=1

t∑
i=1

fi,t
λt + hi,t

(A.29)

where for t ≥ 1, 1 ≤ i ≤ t,

hi,t =
t∑

k=t+1−i

τk, (A.30)

fi,t = −1

2

a

α
βt(a2β)t−i. (A.31)

Using the definition of F k
t (~λ) as the (t+1)-th element of the k-th iterate of F (i.e., F (k)(~λ)),

where F (~λ) is given by (13), we can reorder the terms of the sum in our expression for
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T (~τ) to see that

T (~τ) =− 1

2

aβ

α

[(
1

λ1 + τ1

+ (a2β2)
1

λ2 + τ2

+ (a2β2)2 1

λ3 + τ3

+ . . .

)
+ β

(
1

(λ2 + τ2) + τ1

+ (a2β2)
1

(λ3 + τ3) + τ2

+ (a2β2)2 1

(λ4 + τ4) + τ3

+ . . .

)
+β2

(
1

(λ3 + τ3 + τ2) + τ1

+ (a2β2)
1

(λ4 + τ4 + τ3) + τ2

+ (a2β2)2 1

(λ5 + τ5 + τ4) + τ3

+ . . .

)
+ . . .

]
=− 1

2

aβ

α

[(
1

F0(~λ)
+ (a2β2)

1

F1(~λ)
+ (a2β2)2 1

F2(~λ)
+ . . .

)

+ β

(
1

F 2
0 (~λ)

+ (a2β2)
1

F 2
1 (~λ)

+ (a2β2)2 1

F 2
2 (~λ)

+ . . .

)

+β2

(
1

F 3
0 (~λ)

+ (a2β2)
1

F 3
1 (~λ)

+ (a2β2)2 1

F 3
2 (~λ)

+ . . .

)
+ . . .

]

=− 1

2
b0

[
∞∑
k=1

βk
∞∑
t=0

(
bt
b0

)2
1

F k
t (~λ)

]
. (A.32)

where in the last line we’ve used the solution for bt in (A.8). This is the expression stated

in the proposition.

In the process of solving for the parameters that enter the term T we solved for k, ct, dt,

fi,t and hi,t. To show that our guess for the value function does indeed yield the solution,

we now derive expressions for the final outstanding coefficients of the value function, Dt,p.

From the Bellman equation we see that

Dt,p = −1

2
[(1 + α)2btbp − δt,02bp]+β

[
2kbtbp+(1− δt,0)ct−1bp+ btcp−1 +(1− δt,0)Dt−1,p−1

]
.

For t = 0, we find

D0,p = A(aβ)p , A =
a

α
.

For t ≥ 1,

Dt,p = A(aβ)t+p + βDt−1,p−1 , A =
a

α
.

The recursive equation

y(m,n) = Aξm+n +By(m− 1, n− 1) , m < n

17



has the solution

y(m,n) = Aξm+n
1−

(
B
ξ2

)m
1− B

ξ2

+Bmy(0, n−m) .

Applying this general formula with ξ = aβ leads to

Dt,p =
a

α
(aβ)t+p

1− (a2β)−t

1− (a2β)−1
+
a

α
βt(aβ)p−t .

Thus we have found unique solutions for all the free coefficients of our guess for the value

function, confirming that the initial guess does indeed yield the solution.

E Proof of Proposition 3

From the proof of Proposition 2 we have

dV

dτm
=

dT

dτm
= −

∞∑
i=1

∞∑
t=1

fi,t
(λt + hi,t)2

dhi,t
dτm

.

From (A.19),

dhi,t
dτm

=

{
1 t ≥ m and t ≥ i ≥ t+ 1−m
0 otherwise

Hence,

dV

dτm
= −

∞∑
t=m

t∑
i=t+1−m

fi,t

(λt +
∑t

k=t+1−i τk)
2

(A.33)

Evaluate this quantity at τt = 0 for all t:

dV

dτm

∣∣∣∣
0

= −
∞∑
t=m

1

λ2
t

t∑
i=t+1−m

fi,t

Let t = m + k where k ≥ 0, and consider the sum
∑t

i=t+1−m fi,t =
∑m+k

i=k+1 fi,m+k. This

sum is equivalent to starting at diagonal element m + k + 1,m + k + 1 of the matrix f in

(A.23), and summing the m terms above this diagonal element (including the diagonal).

Reading off the matrix, we see that this sum simplifies to:

m+k∑
i=k+1

fi,m+k = −βk+1dm−1 −
1

2
βm+k.
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and hence

dV

dτm

∣∣∣∣
0

= −
∞∑
t=m

1

λ2
t

t∑
i=t+1−m

fi,t

=

(
dm−1

∞∑
k=0

βk+1

λ2
m+k

+
1

2
βm

∞∑
k=0

βk

λ2
m+k

)
.

Using the definition of g(m) this expression becomes

dV

dτm

∣∣∣∣
0

= βg(m)

(
dm−1 +

1

2
βm−1

)
.

From (A.28) we have

dm−1 +
1

2
βm−1 = βm−1

(
a

α
+
a

α

a2β

1− a2β
(1− (a2β)m−1)

)
=
a

α
βm−1

(
1 +

a2β

1− a2β
(1− (a2β)m−1)

)
=
a

α
βm−1

[
1− (a2β)m

1− a2β

]
.

The result follows.

F Behaviour of Rm

When φ < β, it is obvious from (21) that Rm is increasing in m. We thus focus on

the case φ > β. From the formula (21), and the requirement φ > β, it is clear that

limm→∞Rm = 0. Here we show that Rm is either monotonically decreasing in m, or has

a unique global maximum for some m ≥ 2, and characterize the parameter ranges where

these two behaviours occur.

The fact that Rm has at most one maximum at m ≥ 2 can be shown by treating m as a

continuous variable. Then Rm has a stationary point iff d
dm
Rm = 0, which a little algebra

shows occurs if

(a2β)m ln

(
a2β2

φ

)
= ln

(
β

φ

)
. (A.34)

This condition has at most one solution for m ≥ 1. Since Rm > 0 for all m, R1 =

1, limm→∞Rm = 0, and dRm/dm changes sign at most once, Rm cannot have a local
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minimum. Thus Rm must be either monotonically declining, or be unimodal with a global

maximum at some m ≥ 2.

It is simple to determine conditions under which these different qualitative behaviours

occur. Since if Rm is not monotonically declining it must be unimodal, the condition

R2 > R1 = 1 is both necessary and sufficient for Rm to be unimodal. A little algebra

shows that R2 > 1 ⇐⇒ Γ ≡ a2β2 + β − φ > 0. Since a = 0 at α = 0, we know

Γ = β− φ < 0 when α = 0. Also, since a is increasing in α, so is Γ. Combining these facts

we see that the set of parameters values for which Γ > 0 must either be empty, or of the

form α > α̂(β, φ), where α̂(β, φ) is some critical value of α at which Γ = 0. Solving the

condition Γ = 0 for α, we find two solutions:

α1 =
(φ− β)(1 + β) + φ

√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
, α2 =

(φ− β)(1 + β)− φ
√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
.

α2 is negative for all β and φ ∈ [β, 1] so we conclude that

α̂(β, φ) =
(φ− β)(1 + β) + φ

√
φ− β

β2 + (φ− β)2 − (φ− β)(1 + β2)
. (A.35)

Observe that α̂(0, φ) = φ(1+
√
φ)

φ(φ−1)
< 0 so Γ is negative at β = 0 irrespective of α. To find the

conditions on β under which α̂(β, φ) ≥ 0 we solve α̂(β, φ) = 0 for β, finding the following

three roots:

β1 = φ , β2 = −1 +
√

1 + 4φ

2
, β3 =

√
1 + 4φ− 1

2
.

β1 violates the condition β < φ, β2 is always negative, but β3 < φ which makes the latter

the relevant critical level of β at which α̂(β, φ) ≥ 0. Thus we define the critical value of β

as

β̂(φ) =

√
1 + 4φ− 1

2
. (A.36)

Thus, when β ∈ [β̂, φ), Rm has a maximum at some m > 1 if α > α̂, otherwise Rm is

decreasing. Figure F.2 below demonstrates these results graphically.
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(a) φ = 1

(b) β = 0.9

Figure F.2: Qualitative behaviour of Rm in different regions of parameter space.



G Uniqueness of the solution to the predictability al-

location problem in Eq. 22

Define

P (~λ) = −
(

1

λ0

+ (a2β2)
1

λ1

+ (a2β2)2 1

λ2

+ . . .

)
= −

∞∑
k=0

(aβ)2k 1

λk
,

and assume that

lim
k→∞

λk+1

λk
> (aβ)2

so that P (~λ) converges.

From (14) we see that finding the optimal vector ~τ in (22) is equivalent to solving the

following deterministic dynamic programming problem:

Q(~λ) = max
~τ

P (~λ) + βQ(F (~λ))

where

F (~λ) = ∆(~λ) + ~τ (A.37)

as in (13), the operator ∆ is defined in (12), and ~τ satisfies the additional constraint

∞∑
m=1

τm = B. (A.38)

P (~λ) is a strictly concave function of ~λ, the ‘state equations’ (A.37) are concave func-

tions of the states and controls, and the auxiliary constraint (A.38) is also concave. Thus

~τ lies in a convex set, and standard results (see e.g. Acemoglu, 2008) imply that this

optimization problem has a unique solution.

H Sensitivity analysis for Figures 3 and 4

Figures F.3 and F.4 below represents the outcome of a calculation identical to that in Fig.

3, but for λ0/B = 1/50 and λ0/B = 50 respectively. Fig. F.3 simply demonstrates that

the rate of decline of the prior with the time horizon has no effect on budget allocations
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when λ0/B is small. In Fig. F.4 predictions are marginal relative to the prior, making

interactions between lead times unimportant. To a good approximation then, the value

function is linear in forecast precisions in this case, as discussed in Proposition 3. Thus,

when φ > β, we expect the entire budget to be allocated to the most valuable forecast lead

time (i.e., the value of m for which Rm in (21) is maximised). The bottom panel of Fig.

F.4 confirms this expectation. When φ < β however, the marginal analysis in Proposition

3 shows that the value of a marginal unit of predictability is increasing in lead time m –

there is no ‘most valuable’ lead time. Since the agent cannot allocate her entire budget to

infinite lead times, and λ0/B is large, but not infinite in Fig. F.4 (so forecasts are only

approximately marginal), interaction effects are still at work in this case, and lead to the

spread out peaks in the top panel of Fig. F.4. Notice however that these peaks place more

weight on the long run than the analysis for λ0/B = 1 in Fig. 3, indicating that first order

effects are more important in this case than in Fig. 3, as we would expect when choosing

a very large value of λ0/B. We emphasise however that λ0/B = 50 is an unrealistically

large value. As discussed in the text, priors and forecasts usually have roughly the same

precisions in practice, so the results in Fig. F.4 grossly underestimate the importance of

the interactions between lead times.

In addition, Fig. F.5 presents results analogous to those in Fig. 4, for the lower value

β = 0.95.
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Figure F.3: Budget share σm allocated to lead time m in the optimization problem in (22).
β = 0.95, λ0

B
= 1/50.
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Figure F.4: Budget share σm allocated to lead time m in the optimization problem in (22).
β = 0.95, λ0

B
= 50.
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Figure F.5: Budget share σm allocated to lead time m in the optimisation problem in (22),
when β = 0.95, λ0

B
→ 0. This figure illustrates the ‘pure’ effect of substitution between

lead times when priors play no role in the analysis.
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