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Abstract

How do voters’ behavioural biases affect political outcomes? We study this question in

a model of Downsian electoral competition in which candidates have private information

about the benefits of policies, and voters may infer candidates’ information from their elec-

toral platforms. If voters are Bayesian, candidates ‘anti-pander’ – they choose platforms

that are more extreme than is justified by their private beliefs. However, anti-pandering is

ameliorated if voters’ inferences are subject to confirmation bias. Voter confirmation bias

causes elections to aggregate candidates’ information better, and all observers, whether

biased or Bayesian, would like the voters in our model to exhibit more confirmation bias

than they do themselves.

Keywords: Confirmation bias, electoral competition, pandering, signaling.

JEL codes: D72, D91

1 Introduction

Politicians often surround themselves with experts and advisers who provide them with in-

formation about the consequences of policy choices. While voters seldom have direct access

to this information, they can in principle infer it from politicians’ policy platforms. Since

more information is presumably better, intuition might suggest that competition between

multiple privately informed candidates would lead to more informed voters and better out-

comes from elections. However, electoral competition can lead to undesirable outcomes when

office-motivated candidates choose their platforms strategically, accounting for the inferences
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rational voters will make from them. This paper studies signaling and electoral competition

when voters are not fully rational; we assume that they exhibit a form of confirmation bias

that distorts their inferences from candidates’ platforms. Can elections in this context aggre-

gate candidates’ information more effectively, and give rise to better outcomes for voters?

Of all the well-known behavioural biases, confirmation bias is surely one of the most con-

sequential for political decision-making. As Barack Obama stated in his farewell speech on

January 11, 2017, we have a tendency to ‘accept only information, whether true or not, that

fits our opinions, instead of basing our opinions on the evidence that’s out there’. Psychol-

ogists have identified several specific behaviours that the term ‘confirmation bias’ subsumes

(Kahneman & Tversky, 1973; Nickerson, 1998). These include a tendency to overweight evi-

dence that confirms our prior beliefs, limit the range of sources we consult to those that are

consistent with our priors, and more easily recall evidence that favours our priors. Taber &

Lodge (2006) show experimentally that citizens exhibit these behaviours when forming opin-

ions on politically contentious issues such as gun control and affirmative action. In this paper

we focus on analysing how confirmation bias that distorts voters’ interpretation of information

might affect the outcome of competitive elections.

The model we study is a version of the classical Downsian model of electoral competition.

Two political candidates possess private information about policy consequences, and choose

their platforms with a view to maximizing their probability of winning the election. Voters

infer candidates’ information from their electoral platforms, update their beliefs about which

policies are optimal, and vote for the candidate whose platform is preferred given their updated

beliefs. Although each candidate chooses her platform so as to appeal to voters, electoral

competition between them can lead to two different kinds of distortions. Candidates who

pander to the median voter1 distort their platforms towards the voter’s prior beliefs, and

away from their private, more informed, beliefs (Heidhues & Lagerlof, 2003).2 Similarly,

candidates who anti-pander choose platforms that are more extreme than is justified by their

private beliefs, i.e., they push their platforms away from the voter’s prior, and from what

they privately believe to be optimal. Kartik et al. (2015) (henceforth KST) have shown that

anti-pandering equilibria arise in electoral signaling games in which candidates can choose

platforms from a continuous interval of the real line.3 Candidates’ platforms are so extreme

in their model that voters are worse off than they would have been if they only had access

to one candidate’s information. In effect, electoral competition fails to aggregate candidates’

private information.

In this paper we marry a version of the KST model with a model of confirmation bias

due to Epstein (2006), allowing us to illustrate how voter confirmation bias affects candi-

1Since we work in the Downsian framework only the median voter’s preferences are relevant for determining
equilibrium behaviour. We thus refer to ‘the voter’ from now on where there is no possibility of confusion.

2Other studies of pandering in a Downsian framework include Laslier & Van der Straeten (2004) and
Gratton (2014).

3See Levy (2004, 2007) for other examples of anti-pandering.
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date behaviour and information aggregation in elections. We show that when voters exhibit

confirmation bias candidates’ incentives to anti-pander are ameliorated – confirmation bias

and strategic electoral incentives partially offset one another. If the degree of confirmation

bias is not too extreme, voter confirmation bias is welfare improving from the perspective

of a rational Bayesian observer. Moreover, from the perspective of any observer, whether

biased or Bayesian, the optimal level of voters’ confirmation bias is higher than the observer’s

own level of bias. In addition, if the voter’s confirmation bias is above a threshold value,

welfare is strictly higher in competitive elections between two privately informed candidates

than it would be if the voter only had access to one candidate’s information. Perhaps sur-

prisingly, negative findings about the ability of elections to aggregate candidates’ information

and promote voter welfare may thus be reversed if voters suffer from confirmation bias.

Our paper contributes to two strands of literature in political economics; one studies

information aggregation in elections, the other studies the welfare effects of behavioural biases

in political contexts.

The literature on information aggregation in elections is vast (for a review see e.g. Austen-

Smith & Feddersen, 2009). While much work in this area focuses on the ability of elections

to extract voters’ private information, the converse problem has also been of interest, i.e.,

to what extent may voters benefit from candidates’ private information? Most work on this

topic concludes that electoral competition does not lead to policies that aggregate candidates’

information and promote voters’ welfare.4 These negative results are a consequence of pan-

dering (e.g. Heidhues & Lagerlof, 2003), or of anti-pandering as in KST. In the model of KST,

upon which this paper builds, voters are never better off than they would have been if they

had observed only one candidate’s private signal – there is an ‘as if’ information loss in their

model.5 By contrast, in our behavioural model there is no simple relationship between the

information content of candidates’ platforms and voters’ realised welfare. Even though the

equilibria we study exhibit similar properties to those studied in KST, voters may achieve

high welfare levels, even obtaining the (Bayesian) first best for some parameter values. This

demonstrates that there is in general a complex interaction between voter behaviour, candi-

dates’ strategies and their informativeness, and realised welfare. ‘As if’ information losses do

not necessarily translate into welfare losses in behavioural models.

Our paper also contributes to an emerging literature on the potential positive impacts

of behavioural biases on political equilibria.6 In an early contribution, Levy & Razin (2015)

4An exception is Gul & Pesendorfer (2012), where parties balance the cost of information provision against
the probability of convincing the median voter. In this war of information the voter benefits most when parties
are equally matched, providing a rationale for regulating campaign expenditures.

5The information loss is only ‘as if’ since both candidates’ information is correctly inferred by the voter in a
fully-revealing equilibrium. However, equilibrium platforms in the KST model are equivalent to the first-best
platforms that would occur if candidates had received identical copies of the same signal. Thus, even though
there are two candidates with independent signals, the voter is no better off than she would have been if both
candidates received identical signals. See p.12 for further discussion.

6Of course, behavioural biases do not always lead to welfare improvements in political contexts. Biases that
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found that correlation neglect (i.e. erroneously treating correlated signals as if they were

independent) can improve outcomes for voters.7 In their setting rational voters’ ideological

policy preferences lead them to favour policies that are welfare sub-optimal, thus distorting

the information aggregation process. However, voters who suffer from correlation neglect

overweight their information, counteracting the distortion that arises due to their ideologies.

Our model differs from this approach in a number of ways. Candidates (not voters) are

privately informed in our model, and voters’ beliefs are determined in equilibrium, rather

than exogenously specified. In addition, in our baseline specification candidates and voters

have no ideological policy biases. The distortions in our model are entirely due to the strategic

interaction between privately informed candidates, which arise even if candidates’ objectives

are perfectly aligned with voters’.

On this dimension our paper is perhaps closest in spirit to Lockwood (2017), who in-

troduces voter confirmation bias into the political agency model of Maskin & Tirole (2004).

Although a limited amount of confirmation bias raises welfare in both our models, the compar-

ative statics of pandering with respect to the degree of confirmation bias has opposite signs in

Lockwood’s model and ours. This difference highlights the different roles that pandering and

confirmation bias play in models involving agency (Lockwood) versus electoral competition

(us). In agency models candidates pander to influence the voter’s inference about their type,

i.e. whether their policy preferences are aligned with the voter’s or not.8 Confirmation bias

reduces the benefits of pandering in this framework, since the voter may misinterpret signals,

weakening the case for ‘lying’ in order to try to pass for a type who shares the voter’s pref-

erences. In our electoral competition model however, candidates anti-pander as a strategic

response to the voter’s inferences about their information about the consequences of policy.

Confirmation bias weakens the response of the voter’s beliefs to any information she may

infer from candidates’ platforms, thus reducing the strategic incentive to anti-pander. The

mechanism, and direction of the effects, in these two models is thus quite different. Thus, in

contrast to both Levy & Razin (2015) and Lockwood (2017), whose results depend on a ten-

sion between beliefs and ideologies (of voters or candidates), we identify a purely informational

channel through which confirmation bias may work to improve welfare.

lead to negative welfare consequences include context-dependent voting (Callander & Wilson, 2008), and time
inconsistency (Bisin et al., 2015; Lizzeri & Yariv, 2017).

7Levy & Razin (2015) also study a version of their model in which voters exhibit confirmation bias, but
find no welfare change relative to rational voters.

8Candidates have two possible types in the Maskin & Tirole (2004) model: Consonant or Dissonant. Con-
sonants share the voters’ policy preferences, while Dissonants’ preferences are diametrically opposed to the
voter’s.
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2 The model

We study a model of Downsian electoral competition (Downs, 1957) in which candidates can

signal their private information about the benefits of policy choices through their electoral

platforms. Voters are assumed to have preferences over policies y ∈ [−1, 1] that depend on the

value of an unknown state of the world, θ ∈ Θ ≡ {−1, 0, 1}. Since we work in the Downsian

framework, voters can be represented by a single median voter. In our baseline specification we

assume that the cost of a non-optimal choice (for the median voter) is quadratic in the distance

between the chosen policy and the optimal ex-post choice. We relax these assumptions in

Section 3 below, where we consider a continuum of voters with heterogeneous ideological

preferences. For now, the representative voter’s preferences are taken to be

u(y) = −E(y − θ)2, (1)

where E denotes the expectation operator. θ may be thought of as the optimal policy choice

given perfect knowledge of the state of the world. It is clear from (1) that in general the

voter’s optimal policy choice is

ŷ = Eθ. (2)

Since preferences are single peaked, the voter will always prefer platforms that are closer to ŷ

to those farther away. The probability distribution from which θ is drawn is denoted by the

3-vector

p = (Pr(θ = −1),Pr(θ = 0),Pr(θ = 1)) ≡ (p−1, p0, p1).

This probability distribution is itself uncertain, and beliefs about p are subject to revision if

new information becomes available. The vector p, and not θ itself, is the primitive uncertain

quantity in the model, as we explain below.

We assume that there are two purely office-motivated candidates, A and B. At the

beginning of the game the voter and the candidates have common prior beliefs about the

possible values of p. We assume that prior beliefs over p are given by a Dirichlet distribution

with probability density

g(p;ααα) =
Γ(
∑

k∈Θ αk)∏
k∈Θ Γ(αk)

∏
k∈Θ

pαk−1
k , (3)

where

ααα = (α−1, α0, α1)

is a vector of hyper-parameters, and Γ(·) is the Gamma function. The Dirichlet distribution

is a multidimensional generalization of the Beta distribution, and is a natural prior on the

set of discrete probability distributions. The support of the prior distribution in (3) is the
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2-dimensional simplex of three element probability distributions. The parameter vector ααα

controls the shape and concentration of prior beliefs on this simplex.

Given these assumptions we can write the voters’ ex-ante bliss point as

ŷ0 = Eθ =

∫ (∑
θ∈Θ

pθθ

)
g(p;ααα)dp. (4)

Some simple calculations show that∫
pθg(p;ααα)dp =

αθ∑
k∈Θ αk

(5)

and thus we have

ŷ0 =
α−1 − α1∑

k∈Θ αk
.

We assume a symmetric model, in which prior beliefs place equal weight on all pairs of

distributions of the form p = (a, b, c) and p′ = (c, b, a). Thus θ = −1 and θ = 1 are treated

as equally probable ex-ante. This requires α−1 = α1, implying that ŷ0 = 0. In addition, we

assume that prior beliefs are concentrated on probability distributions p in which θ = 0 is the

most likely realized value of θ. This requires α0 > α1. θ = −1, 1 are thus seen as ‘outliers’ a

priori, relative to the modal value of θ = 0.

The timing of events is as follows. In period 0 each candidate i ∈ {A,B} receives a

private signal si ∈ Θ about the uncertain state θ. After observing their signals, candidates

simultaneously choose their platforms, denoted yA and yB, in order to maximize their proba-

bilities of winning the election. In period 1 the voter observes candidates’ platforms, perhaps

infers something about the signals the candidates received, and updates her beliefs about the

probability distribution p accordingly. Finally in period 2 an election takes place, and the

candidate whose platform is closest to the median voter’s updated bliss point (2) is elected. If

the voter is indifferent between two platforms she randomizes with equal probability between

the two candidates. Figure 1 summarizes the sequence of events in the electoral game.

The model we have described above is superficially different from the baseline specification

in KST, which focusses on a model with a continuum of signals and normally distributed

prior beliefs. However, although the statistical formalism in our discrete model may be less

familiar to some readers, the two models are analogous to one another. We relegate a detailed

explanation of this fact, and our reasons for focussing on a discrete model, to Appendix A.

2.1 Updating with confirmation bias

The source of novelty in our approach is the behavioural model we adopt for how the voter’s

beliefs change when she infers candidates’ information. We assume that the voter exhibits

confirmation bias, i.e., she underweights information that conflicts with her prior beliefs.
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Figure 1: Timing of events in the electoral game

Since we will focus on fully revealing equilibria (more on this below) we need only consider

the case where the voter infers a pair of signals, one from each candidate. Let

Sij = (si, sj)

be an arbitrary signal pair. In addition, let PB(p|Sij) denote the Bayesian posterior belief

about p after receiving the signal pair Sij . Our model of confirmation biased updating is:

P ∗q (p|Sij) =

{
PB(p|Sij) if Sij = (0, 0)

(1− q)PB(p|Sij) + qg(p;ααα) otherwise.
(6)

where q ∈ [0, 1) is a parameter. Thus, if the voter infers that the candidates’ signals are (0, 0)

her updating rule is unbiased (0 is the modal signal, and value of θ, a priori). In all other

cases, her updating rule is a convex combination of the Bayesian rule and her prior beliefs,

causing her to under-react to information, and biasing her beliefs towards her prior. The

closer q is to 0, the closer the voter’s updating rule is to Bayesian rationality; q is thus a

measure of the magnitude of the voter’s confirmation bias.

Appendix B derives (6) from a primitive model of a non-Bayesian agent’s preferences, due

to Epstein (2006). Epstein’s model provides a micro-foundation for the analysis that allows

us to derive confirmation-biased agents’ inferences, actions, and welfare in a coherent choice-

theoretic framework. However, since the main thrust of the paper can be appreciated without

a full understanding of this apparatus we relegate a detailed discussion to the appendix.9

9The analysis of equilibrium behaviour in our model only requires the reduced form in (6). It is however
essential to ground this reduced form in a formal model of voter preferences, as our main results will con-
cern agents’ welfare. Non-paternalistic welfare computations are undefined in the absence of a fully specified
preference structure, which the Epstein formalism delivers.
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Since the voter’s bliss point (2) is a sufficient statistic for her preferences between candi-

date’s platforms, we will be interested in computing her posterior expected value of θ condi-

tional on receiving a signal Sij , denoted by Eq[θ|Sij ]. Some calculations with the Dirichlet

distribution (3) and the updating rule (6) show that:

Eq[θ|Sij ] =

∫ (∑
θ∈Θ

pθθ

)
P ∗q (p|Sij)dp⇒


Eq[θ|(1, 0)] = 1−q

2α1+α0+2 = −Eq[θ|(−1, 0)]

Eq[θ|(0, 0)] = Eq[θ|(−1, 1)] = Eq[θ|(1,−1)] = 0

Eq[θ|(1, 1)] = 2(1−q)
2α1+α0+2 = −Eq[θ|(−1,−1)].

(7)

2.2 Equilibria

A pure strategy for candidate i is a function yi(.) : Θ→ [−1, 1], where yi(si) is the platform

chosen by i when his signal is si. We focus throughout on symmetric, fully revealing strategy

profiles, in which yi(·)=y(·), for i=A,B, with the property that if si 6=s′i then y(si) 6=y(s′i).
10

Given such a profile, and a vector of platforms ζζζ = (ζi, ζj) ∈ y(Θ) × y(Θ), denote by Sij(ζζζ)

the uniquely identified signal pair
(
y−1(ζi), y

−1(ζj)
)

that the voter can infer from observing

ζζζ. Next, given a bias level q, let ωyi (ζζζ; q) denote the probability that the voter selects i if

the candidates’ symmetric strategy is y and the announced platform vector is ζζζ, with the

restriction:

if ζζζ ∈ y(Θ)× y(Θ) then ωyi (ζζζ; q) =


1 if |ζi − E[θ|Sij(ζζζ)]| < |ζj − E[θ|Sij(ζζζ)]|

0 if |ζi − E[θ|Sij(ζζζ)]| > |ζj − E[θ|Sij(ζζζ)]|

0.5 otherwise

. (8)

Restriction (8) is the analog of the restriction in sender-receiver games that if a sender makes

an “on the equilibrium path” deviation from his declared strategy, then the receiver must

use Bayes’ Law to update her beliefs about the sender’s private information. When ζζζ /∈
y(Θ)×y(Θ), we impose no a priori restriction on ωyi (ζζζ; q); this is analogous to the assumption

underlying Perfect Bayesian equilibria that after observing an “off the equilibrium path”

deviation, the receiver’s beliefs are unrestricted. (When we support an equilibrium with

specific off-equilibrium path beliefs, we will further restrict ωyi .)

We study the Symmetric Perfect Confirmation-Biased Equilibria (SPCBE) of the game

between candidates and the voter. A strategy profile y(·) is a SPCBE if: A) the voter

updates her beliefs in accordance with the non-rational updating rule (6) for some q, then

chooses between the candidates so as to maximize her expected utility (1), conditional on

these beliefs; and B) for each signal si received by candidate i, the platform y(si) maximizes

his posterior probability of being elected given the voter’s behavior rule A). In symbols, let

10We explain our focus on this class of equilibria, and discuss the existence of other equilibria, in Footnote
12.
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ρ(sj |si) =
αj+Ij=i∑
θ αθ+1 denote candidate i’s posterior predictive probability that candidate j’s

signal is sj , given that i’s signal is si. If i observes signal si and chooses platform ζ against

j’s strategy y(·), i’s expected probability of being elected is
∑

Θ ρ(sj |si)ωi(ζ, y(sj); q). Then

y(·) is a SPCBE if for i = A,B,

∀si ∈ Θ,∀ζ ∈ [−1, 1],
∑
Θ

ρ(sj |si)
(
ωyi (ζ, y(sj); q) − ωyi (y(si), y(sj); q).

)
≤ 0 (9)

Our first result shows that there is a unique fully revealing, symmetric equilibrium (all

proofs are contained in the appendix):

Proposition 1. For each q ∈ [0, 1), there is a unique fully revealing, SPCBE in pure strategies

yq(·), given by:

yq(−1) = −ȳq; yq(0) = 0; yq(1) = ȳq, where ȳq =
2(1− q)

2α1 + α0 + 2
. (10)

Each candidate is elected with probability 1/2 regardless of his signal realization.

To understand the important features of the equilibrium in Proposition 1, begin by con-

sidering the case of a Bayesian voter, i.e. q = 0. In this case candidates’ equilibrium platforms

exhibit anti-pandering: their platforms are more extreme than their private beliefs about the

voter’s posterior bliss point. To see this, note that

E[θ|1] =
1

2α1 + α0 + 1
< ȳ0 and E[θ| − 1] =

−1

2α1 + α0 + 1
> −ȳ0, (11)

where expectation operators without subscripts are Bayesian.11 Thus, for example, a candi-

date who receives a signal 1 believes that the voter’s most preferred platform will be at E[θ|1],

however in equilibrium this candidate plays ȳ0 > E[θ|1]. Candidates thus overreact to their

private information, choosing equilibrium platforms that are more extreme than they believe

they should be.

To understand why candidates anti-pander it is helpful to see why a strategy profile in

which each candidate plays his true posterior expected value of θ is not an equilibrium. Sup-

pose that candidates play their true posterior expectations, i.e. on receiving signals (−1, 0, 1)

they play (−y∗, 0, y∗) where y∗ = E[θ|1]. To make the discussion concrete, suppose that

11This calculation follows from the properties of the Dirichlet distribution (3):

Prob(p|1) ∝ Prob(1|p)g(p;ααα) = p1g(p;ααα)⇒ Prob(p|1) = g(p; (α1, α0, α1 + 1))

and hence

E[θ|1] =

∫ (∑
θ∈Θ

pθθ

)
Prob(p|1)dp =

1

2α1 + α0 + 1
(−α1 + 0 + (α1 + 1)) =

1

2α1 + α0 + 1
.
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α0 = 1 + δ and α1 = 1 − δ
2 for some δ > 0. In this case we have y∗ = E[θ|1] = 1

4 . Now con-

sider what happens if candidate A plays 0, while B plays y∗. In this case the voter would infer

the signal pair (0, 1), and from (7), her posterior expectation of θ would be E[θ|(0, 1)] = 1
5 .

Since 1
5 is closer to yB = 1

4 than to yA = 0, candidate A will lose the election in this case.

Thus, A’s strategy admits a profitable deviation: if A plays y∗ rather than 0 when he observes

a signal 0, he will tie, rather than lose, the election when B plays ±y∗ and win rather than tie

when B plays 0. The proposed ‘truthful revelation’ strategy thus cannot be an equilibrium.

To eliminate the possibility of a profitable deviation for A, we must increase the value of y(1)

from y∗ to the point where y(1) and 0 are equidistant from the voter’s posterior, conditional

on her inferring the signal pair (0, 1). This point is given by ȳ0 in (10). This equilibrium

exhibits anti-pandering: each candidate’s platform after observing signals ±1 is greater in

absolute value than their private expectations.

The ultimate reason for anti-pandering when voters act as Bayesians is that the voter’s

posterior beliefs after inferring both candidates’ signals are more extreme than the average of

each candidate’s private expectations, which are based on the observation of just one signal.

Indeed, some calculations using the expressions for E[θ|(si, sj)] in (7), and E[θ|si] in (11),

show that

E[θ|(si, sj)] =

[
2× 2α1 + α0 + 1

2α1 + α0 + 2

] [
1

2
(E[θ|si] + E[θ|sj ])

]
(12)

⇒|E[θ|(si, sj)]| ≥
∣∣∣∣12 (E[θ|si] + E[θ|sj ])

∣∣∣∣ , (13)

where the inequality follows since 2 × 2α1+α0+1
2α1+α0+2 ∈ (1, 2), and is strict whenever |si| 6= |sj |.

Thus, if the candidates truthfully reported their private expectations, then whenever the voter

infers signals that are non-identical in absolute value, her posterior beliefs will be closer to

the private expectations of the candidate with the more extreme signal. This gives rise to

incentives for candidates to overreact to their private information, choosing platforms that

are more extreme than they believe to be optimal. Indeed, using equations (10), (11), and

(12) we see that

y0(1) = E[θ|(1, 1)] = −y0(−1) = −E[θ|(−1,−1)]. (14)

Thus, each candidate chooses his platform at what would be the voter’s bliss point, had she

inferred that both candidates received the same signal. Since the candidates’ platforms are ex

post ties, the voter is no better off than she would have been having observed only one of the

candidates’ signals – there is an ‘as if’ information loss in equilibrium. These results are similar

to those in Kartik et al. (2015), who show that such ‘ex post’ anti-pandering equilibria arise in

a large class of electoral signaling games in which the set of possible platforms is continuous.

Now consider how confirmation bias modifies the equilibrium of the electoral game. When

the voter is subject to confirmation bias, her posterior beliefs are less responsive to her
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inferences about candidates’ signals than those of a Bayesian voter. Equation (7) shows that

her posterior expected value of θ after inferring signal pair Sij is now

Eq[θ|Sij ] = (1− q)E[θ|Sij ] ⇒ |Eq[θ|Sij ]| ≤ |E[θ|Sij ]|

where the inequality is strict as long as Sij 6= (0, 0). Confirmation bias thus draws the voter’s

posterior expected value of θ towards her prior (note that Eq[θ] = 0 a priori). Rational

candidates will adapt their strategies to the biased voter’s beliefs. Since confirmation bias

makes the voter’s posterior beliefs less extreme, this counteracts the strategic incentive to

overreact to information we observed in the Bayesian case. Indeed, we see that platforms in

the equilibrium with confirmation bias satisfy

yq(1) = Eq[θ|(1, 1)] < E[θ|(1, 1)] = y0(1).

2.3 Welfare

Because confirmation bias counteracts the overreaction effects we observed when the voter is

a Bayesian, a Bayesian observer may view voter confirmation bias as welfare improving. To

see the intuition for this consider the effect of a very small amount of confirmation bias on

candidates’ platforms. Equation (14) shows that when q = 0 candidates’ equilibrium plat-

forms are ex-post optimal from the perspective of a Bayesian observer whenever candidates’

signal pairs are (0, 0), (1, 1), (−1,−1), or (−1, 1). Thus, increasing q to a small positive value

ε� 1 has only a second order negative effect on ex-post Bayesian welfare if candidate’s receive

these signal pairs. However when the inferred signal pair is (0, 1) or (0,−1) candidates’ plat-

forms are not ex-post optimal according to the Bayesian observer. When q = ε the Bayesian

observer would calculate ex-post welfare if signals are (0, 1) as

E[(yε(0)− θ)2|(0, 1)]

2
+
E[(yε(1)− θ)2|(0, 1)]

2
=

(yε(1)− E[θ|(0, 1)])2

2
+ terms independent of ε

where we have used the fact that E(y − θ)2 = (y − Eθ)2 + Var(θ), and yε(0) = 0. Since

E[θ|(0, 1)] < yε(1) < y0(1) = E[θ|(1, 1)]

if ε is small, increasing confirmation bias from 0 to ε has a first order positive effect on ex-post

welfare in this case. Similar reasoning holds when the inferred signal pair is (0,−1). Since the

positive effects of a small increase in confirmation bias are first order, but the negative effects

are second order, a small increase in a Bayesian voter’s confirmation bias increases ex-ante

Bayesian welfare.12

12Our model has other equilibria, some of which reduce welfare relative to the benchmark of a Bayesian
voter. Since we assume that candidates are identical a priori, we focus on equilibria that are symmetric
with respect to candidates’ strategies. Of the equilibria that are symmetric with respect to candidates, there
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We can make this more precise by using equations (1) and (10) to define ex-ante Bayesian

welfare as follows:

W = −
∑
si∈Θ

ρ(si)
∑
sj∈Θ

ρ(sj |si)

1

2

∑
t∈{si,sj}

E
[
(yq(t)− θ)2|(si, sj)

] , (15)

where

ρ(si) =

∫
Prob(si|p)g(p;ααα)dp =

αi∑
k∈Θ αk

is the prior probability of receiving signal si, and we have used the fact that the voter random-

izes between candidates’ platforms in equilibrium. Straightforward, if lengthy, computations13

show that

W ∝ −[(α0 + 2α1 + 1)q2 − (α0 + 2α1)q] + terms independent of q.

W is thus a concave function of q, which achieves its maximum at some q∗ > 0. Calculations

with the full analytic expression for W yield the following result:

Proposition 2. A Bayesian observer believes that confirmation bias improves equilibrium

welfare (relative to the case of a Bayesian voter) if

q < qC ≡
α0 + 2α1

α0 + 2α1 + 1
.

The value of q that maximizes ex-ante Bayesian welfare is q∗ = qC/2.

Figure 2a illustrates this result, and the dependence of ex-ante Bayesian welfare on the

confirmation bias parameter q.

To interpret the optimal value of voter confirmation bias q∗ further, notice from (10), (11),

are two kinds. The first is a ‘babbling equilibrium’ in which both candidates announce zero, irrespective of
the signals they observe. This equilibrium has no interesting comparative statics properties, as it does not
vary with the voter’s degree of confirmation bias. The second is a one-dimensional family of semi-pooling
equilibria. Specifically, assume without loss of generality that each candidate announces y−<0 if signal −1
is observed, and y+>0 otherwise. The voter will be indifferent between the two candidates’ platforms unless
exactly one of them observes −1. It follows that this platform profile will be an equilibrium if and only if,
after drawing the appropriate inferences, the bliss point for the voter with bias parameter q equals (y−+y+)/2,
and so is equidistant from y− and y+. Now suppose this property is satisfied. Choose ξ+>0 arbitrarily
and let ξ−=1+(1−ξ+)y+/y−. In this case, the semi-pooling platform pair (ξ+y+, ξ−y−), will also be an
equilibrium, since (ξ+y++ξ−y−)/2=(y++y−)/2. It follows that for any q, there are equilibria which exhibit
either pandering or anti-pandering, for one or both platforms. However, since for each q there is no natural
criterion by which we can select one value of ξ+ over the others, the effect of a change in confirmation bias
on the equilibrium is indeterminate for this family. We thus focus on the only symmetric equilibria for which
changes in voter confirmation bias are both non-trivial and have an unambiguous meaning.

13These computations are best performed with a computer algebra package. As the proofs of the results in
this subsection are simple, if lengthy, algebraic manipulations, we do not provide details here. The Matlab
code used to generate the results is available at https://tinyurl.com/ybfkc7c2.
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(a) Dependence of ex-ante Bayesian welfare on confirmation bias. α0 = 3, α1 = 1.
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and the definition of q∗ that

yq∗(1) =
2(1− q∗)

2α1 + α0 + 2
= 2

1− 1
2

α0+2α1
α0+2α1+1

2α1 + α0 + 2
=

1

α0 + 2α1 + 1
= E[θ|1].

Thus, at the optimal level of voter confirmation bias, candidates play their unbiased private

best guess of the value of θ. They thus act as if they were in a non-strategic situation,

effectively forgetting that the voter will in fact infer two signals in equilibrium. At first this

may seem surprising, given that welfare depends on the ex-post expected value of θ conditional

on both signals being observed. To understand this further, note that the optimal value of

y(1) (i.e. candidates’ platforms when they receive signal 1) for an ex-ante Bayesian observer

must satisfy

max
y(1)

−∑
sj∈Θ

ρ(sj |1)E[(y(1)− θ)2|(sj , 1)]

 .

Denoting the solution of this optimisation problem by y∗(1), we have

y∗(1) =
∑
sj∈Θ

ρ(sj |1)E[θ|(sj , 1)]

=
∑
sj∈Θ

ρ(sj |1)

∫ (∑
θ∈Θ

pθθ

)
Prob(p|(sj , 1))dp

=

∫ (∑
θ∈Θ

pθθ

)∑
sj∈Θ

Prob(p|(sj , 1))ρ(sj |1)

 dp
=

∫ (∑
θ∈Θ

pθθ

)
Prob(p|1)dp

= E[θ|1].

Since the voter’s payoff function is quadratic, the platform that maximizes ex-ante Bayesian

welfare when one of the candidates receives a signal 1 is just the expected value of θ, con-

ditional on 1 being observed. This expectation runs over the values of the other candidate’s

signal sj . However, by the Law of Iterated Expectations, the expected value of θ conditional

on the signal pair (sj , 1) being observed, averaged across all values of sj , is equivalent to the

expected value of θ if just the single signal 1 were observed. Unbiased strategies are thus

ex-ante optimal from the perspective of a Bayesian observer.

In Figure 2b we illustrate the extent to which candidates’ signals provide an informational

welfare benefit, despite the distortions in their platforms. To quantify this we compare ex-

ante welfare when there are two privately informed candidates to ex-ante welfare when there

14



is only one candidate who seeks to maximise the voter’s welfare.14 If candidate’s platforms

were undistorted by political competition, two candidates would always be better than one,

as information has positive value. However, a key finding of KST is that electoral competition

between two candidates gives rise to a welfare loss relative to a single informed candidate (this

is a consequence of anti-pandering). Figure 2b illustrates that this result may be reversed if

the voter exhibits confirmation bias. Ex-ante Bayesian welfare is larger with two candidates

than with one whenever the voter’s bias parameter q > 0.26 in this example.

The Bayesian welfare measure we have used thus far provides a natural normative bench-

mark for welfare judgements. However, it is also interesting to ask how a confirmation-biased

observer would evaluate the equilibrium outcome. In Appendix B we show that the appro-

priate welfare measures for an observer who has confirmation bias parameter qw is:

Wqw = −
∑
si∈Θ

ρ(si)
∑
sj∈Θ

ρqw(sj |si)

1

2

∑
t∈{si,sj}

Eqw
[
(yq(t)− θ)2|(si, sj)

] , (16)

where the expectation Eqw is now taken with respect to the observer’s biased posterior beliefs,

given by (6) with q = qw. Notice that two occurences of confirmation bias enter this welfare

calculation: the observer’s bias qw and the voter’s bias q, and only the latter influences the

candidates’ strategies. Aside from modifying the observer’s views on the ‘correct’ platform

conditional on candidate’s signals Sij , confirmation bias also affects the observer’s views on

the posterior predictive probability ρqw(sj |si). Using an updating rule analogous to (6) but

for one signal,15 and the properties of the Dirichlet distribution, one can show that

ρqw(sj |si) =


αj+Isj=0∑
k αk+1 si = 0

(1− qw)
αj+Isi=sj∑

k αk+1 + qw
αj∑
k αk

si 6= 0.

(17)

Appendix B explains that the prior probability of receiving a signal si, ρ(si), is unaffected by

confirmation bias in the Epstein (2006) framework that underpins the model.

Calculations similar to those used in Proposition 2 now yield the following:

Proposition 3. For all qw ∈ [0, 1), the biased ex-ante welfare measure Wqw is a concave

14Formally, the one candidate benchmark welfare level is

W 1(q) = −
∑
si∈Θ

ρ(si)E
[
(y1
q(si)− θ)2|si

]
where y1

q(si) = Eq[θ|si].
15Note that, unlike Bayesian updating, updating with confirmation bias will in general be sensitive to the

order in which signals are received (see also Rabin & Schrag (1999)). Thus, posterior beliefs after observing
two signals in sequence will differ from posterior beliefs after observing the same two signals simultaneously.
Since signals are always inferred simultaneously in our model this poses no difficulties for us, and we use the
same updating rule for individual signals si and simultaneous signal pairs Sij .
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function of the voter’s confirmation bias parameter q. It attains its maximum at q = q∗(qw) ∈
(0, 1), where the function q∗(qw) is increasing, and satisfies q∗(qw) > qw for all qw ∈ [0, 1).

The upshot of this proposition is that all observers, whether biased or Bayesian, would

prefer the voter to be more biased than themselves. Figure 3a illustrates this result. The

intuition is very similar to that in the Bayesian case. Consider the case where the voter’s

confirmation bias parameter q is just above the observer’s, i.e. q = qw + ε. A voter with

q = qw induces candidates to choose platforms that are ex-post optimal from the perspective

of an observer with bias qw when the inferred signals are (−1, 1), (0, 0), (1, 1) or (−1,−1). A

small increase in q gives rise to second order losses in these cases. However, platforms are

non-optimal when inferred signals are (0, 1) or (0,−1), and a small increase in q gives rise to

first order gains in these cases since

Eqw [θ|(0, 1)] < yqw+ε(1) < yqw(1) = Eqw [θ|(1, 1)].

Thus, increasing q above qw is always welfare improving for the biased observer. Similar logic

shows that a small decrease in q below qw reduces welfare, since in addition to the familiar

second order losses, this also gives rise to first order losses when inferred signals are (0, 1) or

(0,−1). Since welfare is concave and locally strictly increasing in a neighborhood of qw, it

cannot be higher than at qw when q < qw. Thus all observers, whether biased or Bayesian,

would like the voter to be more biased than themselves.

Recall that in Figure 2b we showed that Bayesian welfare with two privately informed

competitive candidates is higher than with only one candidate provided the voter is suffi-

ciently biased (q > 0.26 for that example). Figure 3b shows that this finding generalises to

confirmation-biased welfare measures. The figure plots the ‘break-even’ value of the voter’s

bias at which confirmation-biased welfare with two candidates is equal to confirmation-biased

welfare with one candidate, denoted by BE(qw) (solid red line). Whenever q > BE(qw),

welfare in the two candidate election is higher than welfare when there is only one candidate,

from the perspective of an observer with bias qw.

3 Discussion

Our results thus far have all focussed on the simplest version of the model in which there

is a single representative voter, and candidates are purely office motivated and commit to

implementing the platforms they announce. We now examine how (and if) our results might

change if these assumptions are relaxed.
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3.1 Heterogeneous voter ideologies

Our main analysis used the fiction of a single representative voter to simplify the presentation.

We now show that all our welfare results are preserved in a model with a continuum of voters

with idiosyncratic policy preferences. Suppose that voters are indexed by their a priori

ideological bliss points b, which affect their payoffs from a platform choice y thus:

u(y; b) = −E(y − (θ + b))2.

Voter bliss points are distributed on [−b̄, b̄] according to the cumulative distribution function

G(b). Let bm be the bliss point of the median voter, i.e., bm satisfies G(bm) = 0.5. Since voter

preferences are still single-peaked, and all voters update their beliefs in a common manner,

it is clear that the unique fully revealing SPCBE of the electoral game will be for candidates

to choose platforms ỹq(si) given by

ỹq(si) = bm + yq(si)

where yq(si) is the equilibrium platform from Proposition 1. The ex-ante welfare of a voter

with bliss point b in this equilibrium, according to an observer with confirmation bias param-

eter qw, is:

W̃qw(b) = −
∑
si∈Θ

ρ(si)
∑
sj∈Θ

ρqw(sj |si)

1

2

∑
t∈{si,sj}

Eqw
[
(ỹq(t)− (θ + b))2|(si, sj)

] .

Total ex-ante voter welfare according to this observer is

Vqw =

∫ b̄

−b̄
W̃qw(b)G′(b)db.

Proposition 4. Propositions 2 and 3 are unchanged by the introduction of heterogeneous

voter bliss points.

This result follows from the fact (proved in the appendix) that:

Vqw = Wqw +

∫ b̄

−b̄
(bm − b)2G′(b)db, (18)

where Wqw is defined in (16). Since the confirmation bias parameters q and qw only enter

total voter welfare Vqw through the first term Wqw in (18), the results described in Section

2.3 apply for arbitrary distributions of voter bliss points.
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3.2 Mixed motives

While candidates in our baseline model are purely office-motivated, our result is robust to the

introduction of a small degree of policy motivation. Following KST we consider the following

augmentation of candidate i’s preferences to include a policy motivation:

u(y, bi, ρi) = −ρiE(y − (θ + bi))
2 + (1− ρi)IW=i (19)

where IW=i is 1 if i wins the election and 0 otherwise, bi is candidate i’s a priori bliss point,

and ρi ∈ [0, 1] measures the strength of i’s policy motivation. Obviously, when ρi = 0, we

recover our baseline specification.

Assume now that player j plays the equilibrium strategy specified in Proposition 1. As-

sume also that the voter’s beliefs are as specified in equation (27) of Appendix C. If candidate

i plays the same strategy as j, he wins the election with probability 0.5. From (19), his ex-

pected payoff is

−ρiE[(yq(si)− θ − bi)2|si] + (1− ρi)/2

As we show in Appendix C, if he deviates from this strategy and plays z(si), he wins the

election with probability strictly less than 1/3, so that his payoff from winning is bounded

above by (1− ρi)/3. Thus his net gain to deviating is strictly bounded above by

ρi
[
E[(yq(si)− θ − bi)2 − (z(si)− θ − bi)2|si

]
− (1− ρi)/6 (20)

For given bi, (20) will be negative for ρi ∈
(
0, ρ̄i], where ρ̄i = (6E[(yq(si)− θ− bi)2 − (z(si)−

θ − bi)2|si] + 1)
)−1

. That is, if the candidate’s weight ρi on the policy-related argument of

his utility function is sufficiently small (at most ρ̄i), there is no profitable deviation from the

strategy specified in Proposition 1. Thus, our results are robust to a small amount of mixed

motives for the candidates.

This result may also be applied to another extension of the model. Thus far we have

assumed, in alignment with most of the literature on signalling games, that all agents have a

common prior. This is a natural modelling assumption, as all the effects in the model then

flow through candidates’ private information and their electoral incentives; there are no other

sources of heterogeneity between voters and candidates. However, it is also of interest to ask

how the results might change if candidates and voters have different priors. This could occur,

for example, if all agents form their priors by observing a sequence of public signals prior to the

election, but candidates and voters have different degrees of confirmation bias. If candidates

are purely office-motivated their priors are irrelevant for determining the equilibrium – they

simply choose platforms based on voters’ inferences. However, if candidates are partially

policy-motivated, their priors could matter. The analysis above shows that provided ρi is not
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too large the results are robust to these concerns. There is nothing in the analysis above that

requires the expectation in (19) to be taken with respect to the same prior as the voter, and

so the results can be applied unchanged to this case.16

3.3 No commitment

We have so far assumed that candidates can commit to their announced platforms. This

assumption is reasonable if candidates, concerned about re-election, wish to build a reputation

for competence and reliability (Alesina, 1988). It is also empirically grounded: a meta-analysis

of research that reports quantitative measures of election promise fulfilment in Northern

America and Europe found that candidates fulfil 67 percent of their promises on average (Petry

& Collette, 2009). This reassuringly indicates that some degree of electoral commitment

occurs in the real world. However, it is still of interest to assess how our results might differ

if we relaxed this assumption.

To explore this possibility, we follow KST and consider the case in which candidates

cannot commit to implement their announced platforms, i.e. platforms are “cheap talk”.

In this scenario candidates are free to implement any policy they please once elected. If

candidates are purely office motivated the resulting pure communication game has many

equilibria, both informative and uninformative. KST argue that, unlike in the version of the

model with commitment, all informative equilibria of this game are implausible, as they do not

survive a basic equilibrium refinement for pure communication games (neologism-proofness).

Their reasoning applies without modification to our setup. This leaves the uninformative

equilibria, of which there are a great many. In uninformative equilibria the voter chooses

each candidate with probability 0.5, and candidates can choose any policy ex-post. There

is thus a sense in which ‘anything goes’ when candidates cannot commit. In the generic

plausible no-commitment equilibrium, candidates’ ex-post policies are independent of the

voter’s beliefs, and confirmation bias thus plays no role in determining realized voter welfare.

It is also of interest to consider what might happen if candidates have mixed motives as in

(19) and cannot commit to platforms. If platform announcements are non-binding, the voter

anticipates that the elected candidate will choose the policy that is optimal given his bliss

point. Therefore, the voter will, with probability 1, elect the candidate whose bliss point is

closest to her own, or will randomize between candidates if they have symmetric bliss points.

Once more we see that the voter’s beliefs, and hence her degree of confirmation bias, are

irrelevant for determining realized policy outcomes, and hence voter welfare.

Thus we see that some degree of policy commitment is essential for our analysis. Put

differently, commitment is required for the electoral model we study to be of interest.

16We are grateful to an anonymous referee for suggesting this variation on the model to us.
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4 Concluding remarks

We have presented a stylized model of the effect of voter confirmation bias on electoral com-

petition, demonstrating that confirmation bias can counteract strategic distortions to can-

didates’ electoral platforms, and hence increase equilibrium welfare. Indeed, we have shown

that all observers, whether biased or Bayesian, would prefer the voters in our model to exhibit

more confirmation bias than they do themselves. In addition, confirmation bias can reverse

existing results on the ability of elections to aggregate candidates’ private information. While

electoral competition between two candidates gives rise to lower ex-ante welfare than if there

were only a single candidate when voters are Bayesian, this need not hold when voters exhibit

confirmation bias. These results are robust to arbitrary distributions of voters’ ideological

preferences, and also to a small amount of mixed motives for candidates.

Unlike previous work, our model does not rely on a tension between voters’ (or candidates’)

ideologies and beliefs. The results hold even if voters have no ideological biases, and voters’

and candidates’ objectives are perfectly aligned. In addition, voters in our model are not

prone to ‘cognitive mistakes’ in their interpretation of information; they simply update in a

non-Bayesian manner. We also show that although information may be lost in equilibrium

(voters in our model are no better off than they would have been if they had observed only one

candidate’s signal), this does not imply that equilibrium welfare is low. Indeed, confirmation

biased voters may realise the Bayesian first best, despite the loss of information.

Our work contributes to an emerging group of papers suggesting that while deviations

from rationality may be unambiguously undesirable for individuals acting in isolation, the

implications of behavioural biases for society at large are more complex. These observations

illustrate the theory of the second-best (Lipsey & Lancaster, 1956) in political contexts. Since

politics invariably leads to non-optimal policy choices, decreasing the ‘rationality’ of political

actors does not necessarily worsen outcomes, and may sometimes be welfare enhancing.
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Appendix

A Relationship between 3 signal model and continuous model

in KST

Although the statistical formalism that arises in our discrete model may be less familiar to

some readers, the symmetric three signal model we use is a direct analogue of the continuous

signal model in KST’s baseline specification. In their model agents’ beliefs about θ are given

by a normal distribution with unknown mean µ, and prior beliefs about µ are also given

by a normal distribution. The voter infers normally distributed signals drawn from the true

distribution of θ, which allows her to update the mean and variance of her prior beliefs about

µ. Each value of µ corresponds to a different probability distribution over θ, and the voter

attempts to learn the value of µ (and hence the correct distribution over θ) from candidates’

signals. Since µ is symmetrically distributed around the prior mean, the set of possible

probability distributions for θ is also symmetric around the prior mean.

Exactly the same structure applies to our model. Each probability vector p is analogous

to a probability distribution for θ given a value of µ in the continuous normal model of KST.

In exact analogy, the agent doesn’t know p a priori, and attempts to learn it from observed

signals. Signals are drawn from the true distribution of θ (which is now discrete), allowing

the agent to update her beliefs about p. Again in analogy, the probability distributions p are

symmetrically distributed around the peak of the prior, which is normalized to occur at zero

in our model.

We have simplified to a 3 signal model as this facilitates the equilibrium analysis in a

model with confirmation biased voters. The crucial feature of the KST model that ensures

the existence of a pure strategy fully revealing equilibrium is the ‘ex post’ property – each

candidate’s equilibrium strategy would be a best response even if the other candidate’s signal

were known. This property is in turn a consequence of the fact that candidates’ signals

si, sj enter the voter’s posterior beliefs through the sum si + sj . With confirmation bias

and a continuum of signals however, the weights on signals in the voters’ posterior will vary

with their distance from the peak of the voters’ prior, and so will be unequal in general.

This destroys the ex post property, which in turn prohibits the existence of a pure strategy

informative equilibrium. This difficulty does not arise with only three symmetric signals,

allowing us to compute a pure strategy equilibrium and perform clean comparative statics on

the degree of confirmation bias.
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B Micro-foundation of confirmation-biased updating and wel-

fare

This appendix provides a micro-foundation for the updating rule in (6), and the welfare

measures in (16) via the model of non-Bayesian updating in Epstein (2006). In Epstein’s

model agents act as if they are subject to self-control problems: they are tempted to deviate

from rational behaviour after information has been received, and sustain a cost for retaining

a measure of self control. The tension between pursuing ‘rational’ objectives and not paying

too high a self-control cost gives rise to a model that allows us to parameterise the degree

of confirmation bias the voter exhibits. Another virtue of this framework for our purposes is

that it allows us to define a measure of a confirmation biased agent’s welfare that is analogous

to standard Bayesian welfare measures.17

To get an intuitive understanding of Epstein’s model it is best to work directly with his

representation result.18 Let F (S) be a menu of acts (maps between states and outcomes),

conditional on receiving a signal S about the state of the world σ. Denote a generic act by

f = f(σ) ∈ F (S). Let PB(σ|S) be the rational Bayesian update of the agent’s prior beliefs

about σ conditional on receiving signal S. We can think of the Bayesian rule as the updating

procedure the agent considers ‘correct’ before she has received the signal S. In addition,

let PT (σ|S) be an alternative ‘non-rational’ updating rule which the agent is tempted to use

once S has been received. Epstein shows that agents who obey the behavioural axioms he

stipulates will choose the act f that solves:

max
f∈F (S)

{∫
U(f(σ))PB(σ|S)dσ + γ(S)

[∫
U(f(σ))PT (σ|S)dσ − max

f ′∈F (S)

∫
U(f ′(σ))PT (σ|S)dσ

]}
(21)

The interpretation of the components of this expression is as follows. The first term represents

the agent’s rational Bayesian expected utility if she were able to commit herself to actions ex-

ante, i.e. before receiving the signal S. However the agent suffers from self-control problems:

once S has been received, she is tempted to update her beliefs using the non-rational rule

PT (σ|S). If the agent manages to partially avoid the temptation to use the non-rational rule,

she pays a self-control cost, represented by the terms in square brackets. The cost of self-

17Epstein’s model is in turn based on Gul & Pesendorfer’s (2001) work on temptation and self control in
intertemporal choice. A perhaps more widely known model of confirmation bias appeared in Rabin & Schrag
(1999) (RS). We use Epstein’s framework rather than RS for several reasons. First, an attractive feature of
the former is that it introduces confirmation bias in a way that is consistent with the classical axioms of choice
theory: Epstein simply adds an extra term to the classical utility function. By contrast, confirmation bias in
RS involves a ‘cognitive mistake’: with some probability, the agent misinterprets one signal for another and
then, next period, forgets that she has done so. Also, RS is less well suited to our electoral signaling game,
as agents’ beliefs update probabilistically in their setup. This complicates standard equilibrium concepts for
signaling games, which normally rely on posterior beliefs being deterministic functions of observations (see
Lockwood, 2017, for further discussion).

18Our presentation of this result is simplified for expositional purposes. In particular, we do not emphasize
Epstein’s axioms on state-contingent menus of acts, but rather work directly with his representation result for
choices conditional on a given menu. We refer the reader to the original paper for further details.
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control increases with the distance between her actual choice and the choice she would have

made if she had given in to temptation. The agent’s choices are thus a compromise between

pursuing her ex-ante rational objectives, and avoiding large self-control costs ex-post. The

cost of exhibiting self-control may be signal dependent, and is captured by the weight function

γ(S) ≥ 0.

To apply this preference representation in our model we need to specialise it further. In a

fully revealing equilibrium the voter will be able to infer the private signals of both candidates

from their platform choices. Thus, the signals the voter infers are of the form Sij = (si, sj)

where si, sj ∈ Θ. Each observed signal pair Sij allows the voter to update her beliefs about

the probability vector p, which determines the likely values of the state of the world θ. To

model confirmation bias we make a specific choice for the ‘temptation’ part of the voter’s

preferences (i.e., the second term in (21)). We assume that after inferring a signal Sij , the

voter is tempted to deploy an updating rule of the following form:

PT (p|Sij) = (1− λ(Sij))PB(p|Sij) + λ(Sij)g(p;ααα) (22)

where g(p;ααα) is the voter’s prior beliefs about p given in (3), and λ(Sij) is a signal-dependent

weight defined below.19 By assumption, the agent’s prior beliefs place more weight on the

central value θ = 0 than the extreme values θ = ±1 (i.e. α0 > α1). Thus, if she infers a

signal (0, 0), this confirms her prior expectations. Any other signal, however, diverges from

her prior beliefs. A voter who exhibits confirmation bias will treat signals that confirm her

prior beliefs differently from those that do not. We adopt the simplest possible choice of the

weight function λ(Sij) that achieves this:

λ(Sij) =

{
0 if Sij = (0, 0)

λ̄ otherwise
(23)

where λ̄ ∈ (0, 1) is a parameter. Substituting these choices into the representation (21), and

assuming that the cost of self control function γ(S) is a constant γ̄, it is easily seen that the

voter will act as if she updates her beliefs according to the compromise rule:

P ∗(p|Sij) =

(
1− γ̄λ(Sij)

1 + γ̄

)
PB(p|Sij) +

γ̄λ(Sij)

1 + γ̄
g(p;ααα). (24)

Defining a new parameter q ≡ γ̄λ̄
1+γ̄ ∈ [0, 1), this updating rule can be written simply as:

P ∗q (p|Sij) =

{
PB(p|Sij) if Sij = (0, 0)

(1− q)PB(p|Sij) + qg(p;ααα) otherwise.
(25)

19An axiomatic justification for this choice for PT (p|Sij) is provided by Epstein (2006).
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This is the updating rule in (6).

To define a confirmation-biased welfare measure that is consistent with this framework,

recall that agents in the Epstein model are only tempted to deviate from rational Bayesian

updating after they receive a signal that conflicts with their priors. Their a priori beliefs

about which signals they are likely to receive are thus unaffected by confirmation bias, but

once a signal has been received it affects their conditional expectations about the state of the

world, and about which additional signals might be observed. These observations, coupled

with equations (1), (21), and (24), lead us to conclude that ex-ante voter welfare in the

equilibrium of Proposition 1, according to an observer who has confirmation bias parameter

qw, is:

Wqw = −
∑
si∈Θ

ρ(si)
∑
sj∈Θ

ρqw(sj |si)

1

2

∑
t∈{si,sj}

Eqw
[
(yq(t)− θ)2|(si, sj)

] . (26)

Here the expectation Eqw is now taken with respect to the observer’s biased posterior beliefs,

given by (6) with q = qw, ρqw(sj |si) is the confirmation-biased posterior predictive distribution

given in (17), and yq(·) is candidates’ equilibrium strategy when the voter has bias q.

C Proof of Proposition 1 (existence)

To prove the proposition, we need to construct a belief system for the median voter. For any

platform y ∈ [−1, 1] announced by candidate i, a belief system specifies a probability distri-

bution over the set {−1, 0, 1} of signals that i may have privately observed. The equilibrium

requirement is as follows: suppose that candidate i announces a platform y; assume that

the voter updates her beliefs having observed y, and then votes for her preferred candidate;

then the payoff that i obtains cannot strictly exceed the payoff he would have obtained if he

had played the strategy prescribed in Proposition 1. The only restriction on beliefs required

by the Perfect Confirmation Biased Equilibrium criterion is that when the voter observes an

“on-the-equilibrium-path” platform—i.e., observes y ∈ [−ȳ, 0, ȳ]—her beliefs are determined

by applying the updating rule in (6). We impose an additional requirement which, though not

required, is extremely natural: voter’s beliefs must be continuous in the platform announced

by player i.

For ȳ as specified in equation (10) of Proposition 1, for δ ∈ [0, ȳ), and η(δ) = (δ + ȳ)/2 ∈
(δ, 1), the following belief system supports (10) as a SPCBE: for i ∈ {A,B}
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if i plays



y′ ≤ −ȳ

−ȳ+δ,

ȳ−δ,

y′ > ȳ

voter assign beliefs



(1, 0, 0)

(1−η(δ)
ȳ , η(δ)

ȳ , 0)

(0, η(δ)
ȳ , 1−η(δ)

ȳ )

(0, 0, 1)

to i’s signal vector (−1, 0, 1). (27)

Using these beliefs we can extend (in the obvious way) the specification (8) of ωyi (ζζζ; q), which

is the probability that the voter chooses candidate i having observed the platform pair ζζζ. We

can then define inferred probabilities over signals following any unilateral deviation from the

candidate equilibrium strategies ȳ(·). To verify that the strategy profile (10) is a best response

to itself it is straightforward to check that for any signal pair the two platforms defined by

ȳ are equidistant from the voter’s posterior bliss point conditional on that pair. This follows

from the definition of ȳ and the expressions in (7) for the voter’s posterior expectations of θ.

We now show that candidate i cannot do better by deviating to any off-equilibrium-path

platform in [−1, 1]. We begin by explaining the structure of the argument. It is straight-

forward to check that if i announces a platform outside the interval [−ȳ, ȳ], he loses the

election with probability 1, regardless of the voter’s beliefs. Now suppose that i deviates to

the platform −ȳ + δ, for δ ∈ (0, ȳ). Having observed this platform, the voter believes (see

(27)) that i’s signal was −1 with some probability, and 0 with the remaining probability. She

simultaneously observes the (on-equilibrium-path) platform selected by j. She thus has to

make three choices, one for each realization of j’s platform. We will show below that in each

case, she would prefer to vote for i rather than j, given one of the possible realizations of i’s

signal, and for j rather than i given the other realization in the support of her conditional

belief. The belief system (27) is specified so that when j’s platform is −ȳ, on balance she

prefers to vote for i, while when j’s platform is either 0 or ȳ, on balance she prefers to vote

for j. But from (5), the ex ante probability that j will announce −ȳ, and hence the ex ante

probability that i will win the election, is α−1

2α−1+α0
< 1/3. Therefore i strictly prefers to play

his equilibrium strategy, and win with probability 1/2.

We now consider each of the possible cases in detail. If:

1) i plays y′ < −ȳ; the voter believes that i’s signal was -1 with probability 1. For each

possible realization of sj , it follows immediately from (7) that y′ is further than yj(sj)

from the voter’s ideal point E[θ|(−1, sj)]; thus i loses the election for any signal realization

by candidate j.

2) i plays −ȳ + δ, for δ ∈ (0, ȳ); the voter assigns beliefs
(

1− η(δ)
ȳ , η(δ)

ȳ , 0
)

to the possibil-

ities that si = (−1, 0, 1). We will show that with these beliefs, i wins the election with

probability < 1/3.
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a) suppose sj = −1. The voter has to consider two possibilities: if si = −1, then

E[θ|(si, sj)] = −ȳ, so she receives utility −δ2 if she votes for i and zero if she votes for

j; if si = 0, then E[θ|(si, sj)] = −ȳ/2, so she receives utility −(ȳ/2 − δ)2 if she votes

for i and −ȳ2/4 if she votes for j. Her expected utility difference between voting for i

and j is thus

−
(

1− η(δ)

ȳ

)
δ2 +

η(δ)

ȳ

(
− (ȳ/2− δ)2 − (−ȳ2/4)

)
= −δ2 +

η(δ)δ2

ȳ
+

η(δ)

ȳ

(
δȳ − δ2

)
= δ(η(δ)− δ) > 0;

so that the voter votes for i

b) suppose sj = 0. If si = −1, then E[θ|(si, sj)] = −ȳ/2, so the voter receives utility

−(ȳ/2−δ)2 if she votes for i and −ȳ2/4 if she votes for j; if si = 0, then E[θ|(si, sj)] = 0,

so she receives utility −(ȳ− δ)2 if she votes for i and 0 if she votes for j. The expected

utility difference between voting for i and j is thus(
1−η(δ)

ȳ

)(
−(ȳ/2−δ)2−(̄− y2)/4

)
− η(δ)

ȳ

(
ȳ−δ

)2

=

(
yδ/2 + δ2/2 − y2/2 − δ3

2y

)
+

(
δ3

2y
− δ2 + δy/2

)
= −

(
δ − ȳ

)2
< 0

so that the voter votes for j

c) suppose sj = +1. If si = −1, then E[θ|(si, sj)] = 0; so the voter receives utility−(ȳ−δ)2

if she votes for i and −ȳ2 if she votes for j; if si = 0, then E[θ|(si, sj)] = +ȳ/2, so

she receives utility −(3ȳ/2 − δ)2 if she votes for i and −ȳ2/4 if she votes for j. The

expected utility difference between voting for i and j is thus(
1− η(δ)

ȳ

)(
− (ȳ − δ)2 − (−ȳ2)

)
+

η(δ)

ȳ

(
− (3ȳ/2− δ)2 − (−ȳ2/4)

)
= δ

{(
δ2

2ȳ
− 3δ/2 + ȳ

)
+

(
ȳ/2 + δ − ȳ2/δ − δ2

2ȳ

)}
= − (ȳ − δ)(2ȳ − δ)/2 < 0

Once again, the voter votes for j.

Thus, if i plays −ȳ+ δ, for δ ∈ (0, ȳ), she wins the election with probability α1
2α1+α0

< 1/3.

3) i plays ȳ − δ, for δ ∈ (0, ȳ); the voter assigns beliefs
(

0, η(δ)
ȳ , 1− η(δ)

ȳ

)
to the possibilities

that si = (−1, 0, 1). The proof that i wins the election with probablity < 1/3 is the mirror
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image of the proof step 2).

4) i plays y′ > ȳ; the voter believes that with probability 1, i’s signal was +1. The proof

that i loses the election, for any signal realization by j, is the mirror image of the proof

step 1).

D Proof of Proposition 1 (uniqueness)

Let y(·) be a fully revealing SPCBE.

1) All type-pairings result in a tied election: Clearly (A) if si = sj , then the election result

is a tie, because i and j play identical strategies. Second, observe that (B) if candidate j

of type 0 is paired with a candidate of type si 6= 0 then the result must be a tie. To see

this, suppose (w.l.o.g) that si = −1.

a) if j wins against i: Then condition (9) fails for si = −1 and ζ = yi(0), since:

∑
Θ

ρ(sj |−1)ωyi (y(−1), y(sj); q) ≤ 1

1 +
∑

θ αθ

(
(α−1 + 1)/2 + α+1

)
=

3α−1 + 1

2(1 +
∑

θ αθ)

since y(−1) ties against y(−1), loses against y(0) and, at best, wins against y(1), while

∑
Θ

ρ(sj |−1)ωyi (y(0), y(sj); q) ≤ 1

1 +
∑

θ αθ

(
(α−1 + 1) + α0/2

)
=

2α−1 + α0 + 2

2(1 +
∑

θ αθ)

since y(0) wins against y(−1), ties against y(0) and, at worst, loses against y(1). Since

α0>α−1, this shows y(0) is a profitable deviation for i from y(−1) conditional on si=−1.

b) if j loses against i: Then condition (9) fails for sj = 0 and ζ = y(−1), since:

∑
Θ

ρ(si|0)ωyj (y(0), y(si); q) ≤ 1

1 +
∑

θ αθ

(
(α0 + 1)/2 + α+1

)
=

α0 + 1 + 2α−1

2(1 +
∑

θ αθ)

since y(0) loses against y(−1), ties against y(0) and, at best, wins against y(1), while

∑
Θ

ρ(si|0)ωyj (y(−1), y(si); q) ≤ 1

1 +
∑

θ αθ

(
(α−1 + 1)/2 + α0

)
=

α−1 + 1 + 2α0

2(1 +
∑

θ αθ)

since y(−1) ties against y(−1) wins against y(0), and, at worst, loses against y(1). This

shows y(−1) is a profitable deviation for j from y(0) conditional on sj=0.

It now follows from (B) that if candidate i of type −1 is paired with candidate j of type

+1, then the election result must be a tie. To see this, suppose w.l.o.g. that to the contrary
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c) i loses against j: Then condition (9) fails for si = −1 and ζ = y(+1), since:

∑
Θ

ρ(sj |−1)ωyi (y(−1), y(sj); q) =
1

1 +
∑

θ αθ

(
(α−1 + 1)/2 + α0/2

)
=

α−1 + α0 + 1

2(1 +
∑

θ αθ)

since y(−1) ties against y(−1) and y(0), and loses against y(+1), while

∑
Θ

ρ(sj |−1)ωyi (y(+1), y(sj); q) =
1

1 +
∑

θ αθ

(
3(α−1 + 1)/2 + α0/2

)
=

3α−1 + α0 + 1

2(1 +
∑

θ αθ)

This shows y(+1) is a profitable deviation for i from y(−1) conditional on si=−1.

2) The unique vector of platforms s.t. all type pairings result in ties is (10):

Assume that y(·) satisfies this property. The following properties are all implications of

the calculations (7).

i) E[θ|(−1,+1)] = 0 implies that y(−1) + y(+1) = 0.

ii) property i), together with |E[θ|(−1, 0)]| = |E[θ|(0,+1)]|, implies y(0) = 0.

iii) y(0) = 0 together with E[θ|(−1, 0)] = −(1−q)
2α1+α0+2 implies y(−1) = −2(1−q)

2α1+α0+2 .

iv) y(0) = 0 together with E[θ|(0,+1)] = 1−q
2α1+α0+2 implies y(+1) = 2(1−q)

2α1+α0+2 .

E Proof of Proposition 4

Consider the ex-ante welfare of a voter with bliss point b in the equilibrium in which candidates

play the strategy

ỹq(si) = bm + yq(si).

According to an observer with bias parameter qw, this voter’s welfare is:

W̃qw(b) = −
∑
si∈Θ

ρ(si)
∑
sj∈Θ

ρqw(sj |si)

1

2

∑
t∈{si,sj}

Eqw
[
(ỹq(t)− (θ + b))2|(si, sj)

] .

Consider the term

Eqw
[
(ỹq(t)− (θ + b))2|(si, sj)

]
= Eqw

[
((yq(t)− θ) + (bm − b))2|(si, sj)

]
= Eqw

[
(yq(t)− θ)2|(si, sj)

]
+ (bm − b)2 + 2(bm − b)Eqw [(yq(t)− θ)|(si, sj)] .

From this we see that

W̃qw(b) = Wqw + (bm − b)2 + 2(bm − b)
∑
si∈Θ

ρ(si)
∑
sj∈Θ

ρqw(sj |si)

1

2

∑
t∈{si,sj}

(Eqw [((yq(t)− θ)|(si, sj)])

 .

(28)
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The last term in this expression is identically zero. To see this, note that

yq(si) = Eq[θ|(si, si)]

and by symmetry ∑
si∈Θ

ρ(si)
∑
sj∈Θ

ρqw(sj |si)Eq[θ|(si, si)] = 0.

Similarly, by symmetry, ∑
si∈Θ

ρ(si)
∑
sj∈Θ

ρqw(sj |si)Eqw [θ|(si, sj)] = 0.

Thus, both the expectations that make up the last term in (28) are zero. Hence, we conclude

that

W̃qw(b) = Wqw + (bm − b)2

The voters’ total ex-ante welfare is∫ b̄

−b̄
W̃qw(b)G′(b)db = Wqw +

∫ b̄

−b̄
(bm − b)2G′(b)db.

Since the confirmation bias parameters q and qw only enter this expression through the first

term Wqw , our welfare results are robust for arbitrary distributions of voter bliss points.
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