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Abstract

I study a preference relation on risky long run public projects induced by a large

maturity limit of expected present values. Under common assumptions this relation has a

variational representation that is related to a well known model of ambiguity aversion; it is

non-probabilistic in general. The formalism generalizes Weitzman’s ‘lowest possible rate’

formula for long run discount rates to a large class of stochastic economies, gives rise to a

notion of stochastic dominance adapted to long run valuation, and characterizes features

of stochastic processes that cause long run cost benefit rules to be non-probabilistic.

Keywords: Cost benefit analysis, long run social discounting, variational preferences,

stochastic dominance.
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Cost benefit analysis prescribes a simple procedure for ranking risky marginal public

projects: project A’s contribution to social welfare is larger than project B’s if the expected

present value of A’s payoffs is larger than the expected present value of B’s payoffs. The

justification for the expected present value criterion, with time- and state-contingent payoffs

discounted using appropriate maturity- and state-dependent social marginal rates of substitu-

tion, appeared in several early contributions (see e.g. Dasgupta et al., 1972; Little & Mirrlees,

1974). The devil is, of course, in the details; a voluminous literature discusses the concep-

tual and practical issues involved in implementing cost benefit rules, chief amongst them the

problem of specifying and parameterizing social marginal rates of substitution, i.e., social

discount rates (see Gollier & Hammitt, 2014; Groom et al., 2022; Millner & Heal, 2023, for

recent reviews).

This paper focusses not on a specific proposal for social discounting, but on the structure of

the cost benefit rule itself, interpreted as a preference ordering on risky projects. I investigate
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the implications of this rule for rankings of long run projects, i.e., risky returns that are

realized in the very distant future. Examples of policy problems that are approximated by

such long time horizons include climate mitigation, infrastructure projects, and nuclear waste

management (Gollier, 2012; Millner & Heal, 2023). I show that for long run projects the

cost benefit rule transforms into a preference ordering that looks very different to the familiar

expected present value formulation. Under common assumptions, long run cost benefit rules

are represented by a variational problem – minimization of a project-specific functional on

a set of measures – and not via expectations. The resulting preference ordering provides

a dual interpretation of the well known variational model of ambiguity averse preferences

(Maccheroni et al., 2006), with quantities that capture ambiguity attitudes in that model

mapping to quantities that capture risk for long run cost benefit rules. The fact that long

run cost benefit rules can have qualitatively different structure and properties from their finite

maturity counterparts is a consequence of a failure of uniform convergence for expected present

value functionals, a phenomenon that arises often when dealing with long run properties of

stochastic processes (e.g. Donsker & Varadhan, 1975; Bobenrieth et al., 2002).

With the variational representation of long run cost benefit rules in hand, I proceed to

investigate the properties of this preference relation on risky projects. I first define a notion

of long run stochastic dominance, an ordering of risks induced by long run cost benefit rules.

Stochastic process X is said to long run stochastically dominate another stochastic process

Y if the long run value of any risky project under X is weakly greater than its value under

Y . I characterize this relation in terms of primitives of long run cost benefit rules, and show

that it is related to a novel dominance ordering on the persistence of stochastic processes,

i.e., an ordering of ‘long run risk’ (Duffie & Epstein, 1992). Thus, the aspect of project risk

captured by long run cost benefit rules is inherently dynamic, although the rules themselves

are formally equivalent to a static preference relation.

Next, I turn to investigating an unusual feature of long run cost benefit rules – their

generic lack of probabilistic structure. I characterize conditions on stochastic processes that

cause families of long run cost benefit rules to be probabilistic. Such families arise from a

collection of related stochastic processes, e.g. i.i.d. processes, or ergodic Markov processes

with a given stationary distribution. The analysis shows that non-probabilistic long run cost

benefit rules occur when the asymptotic dynamics of the stochastic process that generates

risk are rich enough that they cannot respect all the symmetries required by probabilistic

preferences. A consequence of this analysis is that non-probabilistic long run cost benefit

rules are the rule, rather than the exception. I discuss how this feature can lead to unusual

behavior, e.g. strict preferences between projects with identical payoffs in two economies that

are asymptotically statistically identical with probability 1. This analysis also provides an

alternative interpretation of the famous Ellsberg (1961) choice experiments, in which ambi-

guity averse behavior arises not from discomfort with deep uncertainty, but as a consequence

2



of rich dynamical beliefs.

Background and Related Literature

The duality between long run cost benefit rules and variational preferences that lies at

the heart of this paper bridges two disparate parts of the literature; one rooted in social

discounting and public project appraisal, and the other in decision theory. To the best of my

knowledge this connection and its implications have not appeared in either of these sub-fields,

but each of them has extant contributions that contain seeds of the results I present.

The preference relation on long run projects that I study is intimately related to long

standing questions about the appropriate long run social discount rate – I make the relation-

ship between these two concepts precise in Section 1 below. The effect of risk on long run

discount rates was most famously studied by Weitzman (1998, 2001), with many subsequent

contributions on this theme (e.g. Freeman & Groom, 2010; Gollier, 2012; Cropper et al., 2014;

Fleurbaey & Zuber, 2015; Millner, 2020). The essence of Weitzman’s insight is the following

observation: suppose that the future real interest rate is uncertain today, but will be revealed

to be some constant ri in the next time period with probability pi. From the perspective of

today, the present value of a sure payoff of $1 t years from now is thus∑
i

pi exp(−rit)× $1 (1)

The certainty equivalent risk free discount rate r̂(t) on sure payoffs at maturity t is defined

via

exp(−tr̂(t)) ≡
∑
i

pi exp(−rit) ⇒ r̂(t) = −1

t
log

(∑
i

pi exp(−rit)

)
. (2)

It is a simple matter to show that

lim
t→∞

r̂(t) = min
i

ri. (3)

This follows since each of the terms in (1) decays exponentially fast as t increases; in the

t → ∞ limit, the sum is dominated by the term that decays slowest, and hence the certainty

equivalent discount rate r̂(t) tends to the lowest possible rate in the long run. This reasoning

is a simple application of a broader mathematical result known as the Laplace Principle,

which predates Weitzman’s work by more than 200 years (Laplace, 1774). Equation (3) is the

basis for the slogan ‘the far distant future should be discounted...at the lowest possible rate’

(Weitzman, 1998), which has been influential in policy circles (Groom & Hepburn, 2017).

Weitzman’s analysis has been criticized from a variety of perspectives (see e.g. Dasgupta,

2008; Gollier & Weitzman, 2010), but two central limitations are most important for this

paper. First, the result applies only to risk free discount rates, it does not have much to say
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about real world projects whose payoffs may be correlated with sources of interest rate (or

more generally, valuation) uncertainty. Second, and more importantly, the result relies on a

highly stylized representation of uncertainty – all risk is assumed to resolve after a single time

period, after which interest rates remain constant for all eternity.1

The results of this paper show that both these limitations can be overcome in a general

theory of preferences over risky long run projects, which nevertheless maintains a connection

to Weitzman’s original insight. Using a more powerful version of Laplace’s principle that

finds its modern expression in large deviation theory, I show that long run cost benefit rules

can be represented by a generalization of Weitzman’s ‘lowest possible rate’ formula (3). For

a large and empirically relevant class of stochastic economies, long run projects are ranked

by the variational formula

− inf
q∈∆(S)

[∫
S
λ dq + I(q)

]
(4)

where q is a probability measure on a state space S, ∆(S) is the set of all such probability

measures, λ(s) is the asymptotic 1-period rate of decay of project value in state s ∈ S (i.e.,

lower values of λ are better), and I : ∆(S) → R+. The infimal q in (4) varies with the

project being evaluated (i.e., with λ); this implies that long run cost benefit rules do not,

in general, describe uncertainty using a stable probability distribution over a state space –

they are not probabilistically sophisticated (Machina & Schmeidler, 1992). A formula that

is formally identical to (4) (multiplied by -1) can also be used to analyze long run discount

rates in these economies.

The function I(q) in (22) is independent of project returns and discount factors; it depends

only on the asymptotic dynamics of the stochastic process that generates risk. As a formal

matter, Weitzman’s result (3) is the case where

I(q) =

{
0 q = δs

∞ otherwise

where δs is a Dirac measure centered on s ∈ S, i.e., for A ⊆ S, δs(A) returns 1 if s ∈ A, and

zero otherwise. This instance of I(q) – which corresponds to Weitzman’s ‘one-shot’ model of

risk – is the most patient possible model in the class (22); any other risk model must give rise

to weakly larger long run discount rates (holding λ fixed). With richer and more plausible

models of risk (e.g. Markov processes) I(q) will turn out to be a convex function on ∆(S),
often with a single zero at a probability measure p ∈ ∆(S) that captures the ‘typical’ long

run statistics of the underlying stochastic process. Indeed, any function I(q) satisfying weak

1A further important critique is that Weitzman’s analysis conflates normative (e.g. how should society
discount the wellbeing of future generations?) and empirical (e.g. what will future consumption growth rates
be?) questions into a single constant that is difficult to interpret, or justify in the context of more flexible models
of social discounting (Gollier, 2002a,b; Dasgupta, 2008). The framework I develop below applies to normative
and positive approaches to project evaluation alike; see Millner & Heal (2023) for a detailed discussion of these
two methodological approaches to social discounting.
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topological properties is compatible with some stochastic model of the economy; Weitzman’s

‘lowest possible rate’ prescription is inaccurate in essentially all such models.

This paper is of course not the first to incorporate project risk and more realistic stochastic

dynamics into a model of long run project appraisal. Several authors have studied particular

instances of valuation risk and its impacts on long run discounting. Gollier (2002a) studies a

model of the impact of i.i.d. consumption growth shocks on the long run risk free discount

rate, Gollier (2014) presents a model that incorporates serial correlation in growth rates and

project risk in a parametric model, and Fleurbaey & Zuber (2015) investigate a model that

incorporates the effects of inequality aversion on long run discount rates in a model with one-

shot risk à la Weitzman. While these models provide important insights, their treatment of

risk and its influence on long run values is limited to simple parametric, or one-shot, models.

By contrast I present a fully non-parametric treatment that does not rely on a specific model

of social preferences or consumption risk, and encompasses a much larger class of empirically

plausible stochastic processes. This generality allows me to investigate the structure of long

run cost benefit rules as a general class of preference relations on risky projects.

The finance literature has also studied these questions in a number of important con-

tributions. In a Markovian model Hansen & Scheinkman (2009); Hansen (2012) obtain a

representation of long run pricing kernels in terms of a martingale and the Perron-Frobenius

(PF) eigenvalue and eigenfunction of a valuation operator.2 PF eigenvalues of appropriate

valuation operators are an instance of long run cost benefit rules; they are long run growth

factors that can be used to rank risky projects that mature in the distant future. PF eigenval-

ues are important examples of these rules, but they are poor guides to their general structure.

They are complex objects to compute and perform comparative statics exercises with, and the

ergodic Markov property that underlies them corresponds to a particular functional form for

I(q) in (4). Importantly, the effect of risk on long run values, while implicit in PF eigenvalues,

is highly non-intuitive, and all but impossible to understand directly from the eigenfunction

problems that have been the focus of the finance work.

As a simple example of the issues involved, imagine two economies, X and Y , that evolve

on a discrete state space S = {1, 2}. Both economies are Markovian, with transition proba-

bility matrices given by

TX =

(
0.6 0.4

0.4 0.6

)
, TY =

(
0.5 0.5

0.5 0.5

)
. (5)

Consider a risky project with state dependent 1-period discounted returns L⃗ = (L1 L2) where

L1 ̸= L2. Assume that the project will mature in the very distant future, and hence its value

2Hansen & Scheinkman (2009); Hansen (2012) generalize the discrete time ergodic model of Alvarez &
Jermann (2005). Their work has in turn been generalized to semi-martingales by Qin & Linetsky (2017). PF
eigenvalues are also important components of the analysis of normative disagreement and long run discounting
in Millner (2020); Jaakkola & Millner (2023).
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is reflected in the long run growth rate of expected discounted returns (I formalize this notion

of long run value below). If investors can invest in a fixed project L⃗ in either economy, which

should they choose? An intuitive response to this question might be to note, by the symmetry

of the transition matrices TX and TY , that both economies have the stationary distribution

(0.5 0.5). The stationary distribution describes the long run statistics of ergodic Markov

chains with probability 1, suggesting that investors should be indifferent between X and Y .

And yet, a more careful calculation of the long run certainty equivalent rates of return in

these two economies – which are increasing transformations of PF eigenvalues of appropriate

matrices3 – shows that this intuitive reasoning would lead investors to make a large mistake.

In fact, for any risky asset L⃗,

lim
t→∞

Expected Present Value of L⃗ at maturity t|TX

Expected Present Value of L⃗ at maturity t|TY

→ ∞.

How can it be that two economies with identical long run statistics (with probability 1)

nevertheless give rise to such different valuations for long run projects? The answer must

have something to do with differences in the way these economies produce events that are

asymptotically of measure zero. Indeed, the entire contribution of risk to long run values (i.e.

PF eigenvalues in this example) comes from such measure zero events, a point emphasized

in the qualitative analysis of Martin (2012) in a different context.4 Any preference relation

that ranks long run projects must thus be non-probabilistic in general, as it needs to resolve

differences between measure zero events, a task beyond the reach of probabilistically sophis-

ticated preferences. The variational preferences in (22) will turn out to do the job for a large

class of stochastic economies, with the function I(q) encoding information about the rate at

which the probabilities of atypical (i.e., asymptotically measure zero) events decline to zero.

On the other side of the duality between long run cost benefit rules and variational pref-

erences lies the decision theory literature, which has investigated variational preferences of

the kind in (4) in a manner largely divorced from their connection to cost benefit analysis.5

3State-dependent expected discounted returns of project L⃗ at maturity t are given by the row vector

E⃗t = (TL)t(1 1)∗, where L =

(
L1 0
0 L2

)
, T is the relevant economy’s transition matrix, and ∗ is the

transpose operator. The long run certainty equivalent rate of return of L⃗ is limt→∞
1
t
log E⃗t. The Perron-

Frobenius theorem tells us that this quantity is independent of the initial state of the economy, and given by
the log of the PF eigenvalue of TL, which is real and positive.

4Martin (2012) assumes a perfect markets framework in which asset prices are martingales. For public
cost benefits analysis these assumptions need not hold (perhaps especially for long run projects where markets
are highly incomplete, see Millner & Heal (2023)), and it does not hold in the simple example I study here.
Moreover, while Martin (2012) identifies the importance of measure zero events for long run values, he does
not elucidate the structure of preference relations over long run projects, i.e. how risk can be represented for
these preferences, associated stochastic orders, when they are probabilistically sophisticated, their relationship
to variational ambiguity preferences, etc. The latter questions are the focus of the current paper.

5The axiomatic properties of variational preferences were elucidated by Maccheroni et al. (2006). This
model is a generalization of the ‘minmax expected utility’ model of Gilboa & Schmeidler (1989), and the
multiplier preferences model popularized by Hansen & Sargent (2001) – see Strzalecki (2011); Cerreia-Vioglio
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There is however an important exception where conceptually related ideas can be found.

Robson et al. (2023) have demonstrated an equivalence between static rational inattention

and ‘wishful thinking’ models popular in the behavioral literature and i.i.d. stochastic growth

processes. Preferences in these models can, but need not, be expressed as variational prob-

lems. The results in this paper show that these insights can be considerably generalized once

we move away from stochastic models that are dual to probabilistically sophisticated decision

theories.6 Once we do this, a variational representation of preferences becomes necessary, not

optional. In addition, the generality of the theory allows for a much richer understanding of

the properties of preferences derived from the long run behavior of multiplicative functionals

of stochastic processes; these insights would be impossible to obtain in a specific parametric

model (e.g. the i.i.d. processes used in Robson et al. (2023)).

The remainder of the paper is structured as follows. Section 1 defines and characterizes

long run cost benefit rules, establishing their variational representation and its connection to

long run discount rates. Section 2 defines, characterizes, and interprets a natural notion of

stochastic dominance for long run cost benefit rules, illustrating its application to resolving

puzzles of the kind in (5), and demonstrating its connection to orderings of the persistence of

stochastic processes. Section 3 investigates conditions under which long run cost benefit rules

are probabilistic, and the behavioral consequences of violations of those conditions. Section

4 concludes.

1 Variational Representation of Long Run Cost Benefit Rules

Cost benefit analysis is a method for ranking marginal public projects, i.e., projects whose

payoffs are small relative to a baseline aggregate consumption process.7 Project-specific in-

formation is encoded in a stochastic sequence of returns R = (R1, R2, . . .), where Rt (a

random variable) is the return the project yields between maturities t − 1 and t. Details of

the valuation framework are captured by a sequence of 1-period stochastic discount factors

M = (M0,M1, . . .), where Mt (also a random variable) converts payoffs realized at maturity

t+1 into their value in terms of consumption at maturity t. Rt and Mt are positive, bounded,

random variables for all t ∈ N+; they depend on the (stochastic) state of the economy. Cost

benefit rules combine these sequences of random variables into expected present values, which

et al. (2011) for discussions of the relationships between these models of ambiguity aversion.
6The paper also partially addresses a conjecture of Robson et al. (2023): ‘A natural extension of our setting

would allow for serial correlations of the payoff states. We conjecture that the optimal choice arising under
serial correlations can be represented by the dynamic extension of the rational inattention problem studied
in Steiner, Stewart, and Matejka (2017).’ Serially correlated risks and other forms of dynamical structure
are an important part of this analysis; I show that the variational ambiguity model is the correct tool for
understanding the long run behavior of many stochastic processes that exhibit these features.

7We need project payoffs to be small enough that the changes in social welfare they cause are well approxi-
mated by a first order Talyor expansion, and general equilibrium effects can be neglected – see Millner & Heal
(2023).
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are used to rank projects.

1.1 Preliminaries

As an initial example of this framework, suppose that a social planner has preferences over

risky consumption streams that can be represented by

W = E0

∞∑
t=0

e−ρtU(ct),

where the expectation is over stochastic values of the (per capita) consumption sequence

{ct}t=0...∞, and U(c) = c1−η

1−η , where η ≥ 0. Suppose that consumption is a function of a

Markov process on a state space X , i.e. ct = c(xt) for some policy function c(x), and xt is

a Markov process on X . 1-period consumption growth gt+1 between period t and t + 1 is

then given by gt+1 = g(xt+1, xt) := log(c(xt+1)/c(xt)). In this case, the planner’s 1-period

stochastic discount factor at maturity t is

Mt = Mt(xt, xt+1) :=
∂W

∂ct+1(xt+1)
/

∂W

∂ct(xt)
= e−ρU ′(ct+1(xt+1))/U

′(ct(xt))

= exp(−[ρ+ ηg(xt+1, xt)]). (6)

This quantity is the social marginal rate of substitution between consumption at maturity

t+1 in state xt+1, and consumption at maturity t in state xt. Mt is itself a random variable,

since xt and xt+1 are uncertain today (i.e., at t = 0). From the perspective of maturity t, a

marginal stochastic return Rt+1(xt+1) realized at time t+ 1 in state xt+1 is valued according

to its expected present value, conditional on information available at t:

EtMtRt+1 = EtMt(xt, xt+1)Rt+1(xt+1) (7)

In the Markov case the conditioning information for the expectation Et would be encapsulated

in the value of the state variable xt at time t, but the left hand side of the formula (7) is

completely general; it does not rely on the Markov assumption, or a particular model of

planner preferences. Equation (7) says simply that risky marginal payoffs realized at maturity

t+ 1 must be valued using a ‘price’ Mt given by the state-dependent social marginal rate of

substitution between consumption at t+1 and t. That marginal rate of substitution captures

both the relative value of payoffs with maturities t+1 and t, and the relative value of payoffs

realized in different states of the world, as illustrated in the Markovian example (6). We can

iterate the 1-period valuation procedure encapsulated in (7) back to the present to find the

value a project with return sequence R yields at maturity t:

vt(R;M) := R0E0Π
t−1
k=0MkRk+1.
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To this point the formalism has been completely general; I now impose some structure on

the stochastic process that generates risk in the economy. Begin by defining a new random

variable λk through

exp(−λk) := MkRk+1. (8)

Then we can rewrite

vt(R;M) = R0E0 exp

(
−

t−1∑
k=0

λk

)
. (9)

My first assumption is that λk can be represented as a function of a stochastic process on

a state space S:
λk = λ(R;M)(sk), sk ∈ S (10)

for some function λ(R;M).8 This setup is similar to the Markovian example in (6), where the

relevant state space was the product space X × X . The Markov assumption will turn out to

be far more restrictive than is necessary (or desirable) for our purposes, but it is a convenient

example that I will often turn to for intuition. The notation in (10) makes the dependence

of λk on the return process Rk+1 = R(sk+1), and stochastic discount factor Mk = M(sk),

explicit. Note that the sequence of stochastic discount factors is fixed in any cost benefit

exercise (although realizations are random); only the return sequences vary across projects.

The properties I impose on the state space S and the functions λ(R;M) are as follows:

Assumption 1. S is either convex and compact, or finite. The functions λ(R;M) : S → R+

are bounded and continuous in the weak topology, with infs∈S λ(R;M)(s) > 0.

Boundedness and continuity are regularity conditions. Positivity ensures that projects

have finite present value for any realization of the stochastic process sk (this condition will

be relaxed later on).

Given this assumption, we can rewrite the argument of the exponent in (9) as follows:

t−1∑
k=0

λk =

t−1∑
k=0

λ(R;M)(sk) = t

∫
S
λ(R;M)dqt(κ), (11)

where qt(κ) is the empirical measure associated with the sequence κ = {s0, s1, . . . , st−1}. The
empirical measure simply reports the frequency with which κ visits subsets of S. Formally,

recall that the Dirac measure is defined by

δs(A) =

{
1 s ∈ A
0 s /∈ A

,

where s ∈ S, A ⊆ S. Given a sequence κ = (s0, s1, . . .) the empirical measure at maturity t

8This assumption may seem to restrict the explicit dependence of Mt on t, but all the results that follow
go through if this restriction is only required to hold asymptotically.
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is:

qt(A;κ) =
1

t

t−1∑
n=0

δsn(A). (12)

The empirical measure captures information about a deterministic realization of the sequence

κ. Risk is represented by a measure over sequences, i.e., a measure on empirical measures,

due to (11). Let µt ∈ ∆(∆(S)) be the measure on empirical measures at maturity t generated

by the underlying stochastic process on S. I will sometimes abuse notation and write this as

µt(q), as a reminder that it is a measure on empirical measures q ∈ ∆(S). Thus from (9) and

(11) we have

vt(R;M) = vt(λ(R;M)) := R0Eµt(q) exp

[
−t

∫
λ(R;M)dq

]
(13)

where the expectation is taken over all q ∈ ∆(S) with the measure µt(q). All the dynamics

are now captured by µt(q).

1.2 Large Deviation Principles

My core structural assumption on the stochastic process that generates risk in this model

concerns its asymptotic behavior as maturity t → ∞. The important property I will require

is that the stochastic process for the empirical measure qt satisfy a large deviation principle.

At a high conceptual level, this can be understood as a generalization of the law of large

numbers, i.e., the statement that the average of n samples of a random variable with finite

mean converges (in probability) to the mean as n → ∞. Just as in that familiar instance,

stochastic processes that obey large deviation principles also concentrate all their probability

mass on a set of ‘typical’ events (e.g. sequences consistent with the law of large numbers) as

t → ∞. But in addition to this, the probabilities of all ‘atypical’ events decline to zero at

least exponentially fast asymptotically. Large deviation theory allows us to differentiate these

asymptotically measure zero atypical events from one another by studying the rates at which

their probabilities decline to zero. Examples of stochastic processes whose empirical measures

obey large deviation principles include i.i.d risks, martingales, ergodic Markov processes, and

more general measure preserving dynamical systems (Dembo & Zeitouni, 2009; Budhiraja &

Depuis, 2013; Shalizi & Kontorovich, 2007) – almost all of the stochastic processes used in

cost benefit analysis fall into one of these categories.9

A crucial feature of stochastic processes that satisfy large deviation principles is that all

9In applications in finance a no-arbitrage condition is usually imposed. This causes discounted returns to be
martingales, and gives rise to a semi-group structure for pricing kernels (Hansen & Scheinkman, 2009; Hansen,
2012). Such processes are known to obey large deviation principles (Kurtz & Feng, 2010). In applications in
social discounting and cost benefit analysis more broadly no-arbitrage need not be imposed, but the stochastic
processes that generate risk almost always possess other properties – ergodicity, or more generally measure
preserving dynamics – that give rise to a large deviation principle (see e.g. Shalizi & Kontorovich, 2007).
Gollier (2012); Ljungqvist & Sargent (2004) contain many examples of such models.
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long run risk is asymptotically measure zero. We can see this in the familiar case of the law

of large numbers – if the large time average of a sequence of i.i.d. random variables tends

to the mean with probability 1, the only place left for variability in that average is in the

measure zero events. Since expectations are insensitive to measure zero events, it is intuitive

that a different formalism is needed if we are to resolve risk in long run outcomes. What will

become clear is that resolving these measure zero events is essential if we hope to represent

risk in long run cost benefit rules.

As an intuitive initial illustration of a situation where a large deviation principle for the

empirical measure holds, suppose that st is a sequence of i.i.d. Bernoulli distributed random

variables taking values in {0, 1} with Prob(1) = p ∈ (0, 1). For an arbitrary set B ⊂ [0, 1] and

positive integer t, define

Γt(B) = {n/t|n = 0 . . . t} ∩ B.

The probability that the empirical frequency of ones qt =
1
t

∑t−1
n=0 sn in a sequence of length

t lies in the set B is then10

µt(B) =
∑

q∈Γt(B)

(
t

tq

)
ptq(1− p)t(1−q). (14)

Using Stirling’s formula11 to approximate the t → ∞ behavior of the binomial coefficient, one

can easily show that (ignoring divisibility issues),

lim
t→∞

1

t
log

[(
t

tq

)
ptq(1− p)t(1−q)

]
= −D(q||p) (15)

where D(q||p) is given by

D(q||p) = q log
p

q
+ (1− q) log

1− p

1− q
. (16)

D(q||p) is non-negative, convex in q, and equal to zero only if q = p. This function is known

as the relative entropy of the probability distribution (1 − q, q) with respect to (1 − p, p).

Thus, as t becomes large, the terms in the sum (14) behave like exp(−tD(q||p)). Since (14) is
a sum of terms that are declining to zero exponentially as t → ∞, the term with the smallest

rate of decay will dominate for large t (see e.g. Hardy et al., 1934), i.e.,

lim
t→∞

1

t
logµt(B) = − inf

q∈B
D(q||p) (17)

for ‘nice’ sets B where this limit exists. This is of course another instance of the Laplace

principle, this time applied to probabilities. I have played fast and loose with rigor at several

10The following formula uses the notation
(
n
k

)
= n!

k!(n−k)!
for the binomial coefficient.

11Stirling’s formula says that logn! = n logn− n+O(logn).
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points in this exposition – Dembo & Zeitouni (2009) contains a careful treatment.

The relationship in (17) is an instance of the defining feature of large deviation principles

for the empirical measure. The relative entropy D(q||p) is an example of a rate function,

i.e., a function that controls the asymptotic rate of decay of the probabilities of sets in ∆(S)
under a sequence of measures in ∆(∆(S)). It is apparent that this example can be extended

to any i.i.d. risk; moreover, the relative entropy continues to quantify the rate of decay

of probabilities in the general i.i.d. case, a result known as Sanov’s theorem. The i.i.d.

assumption can also be relaxed. There are large classes of stochastic processes that exhibit

serial dependence – e.g. ergodic Markov processes and martingales – but satisfy a large

deviation principle. The rate function for the empirical measure does not correspond to the

relative entropy in these more general cases, and can take a wide variety of forms. In fact,

given an arbitrary non-negative function I(q) with compact lower contour sets, it is always

possible to construct a stochastic process that satisfies a large deviation principle with rate

function I(q).12 This illustrates that requiring a large deviation principle for the empirical

measure is much more general than, e.g., restricting the analysis to Markov processes, whose

rate functions have a specific functional form (see Section 3).

In the general case, as before let ∆(S) be the set of probability measures on a set S that

obeys Assumption 1, and let {µt}t∈N+ be a sequence of measures on ∆(S), i.e., µt ∈ ∆(∆(S))
for each t. Think of µt as describing the distribution of the realized empirical measure qt at

maturity t. The sequence of measures {µt} satisfies a large deviation principle if for ‘nice’

sets B ⊂ ∆(S),
lim
t→∞

1

t
logµt(B) = − inf

q∈B
I(q) (18)

where I(q) ≥ 0 is a function with compact lower contour sets, i.e., a rate function.13 In the

language of the discussion above sets B ∈ ∆(S) for which infq∈B I(q) > 0 are atypical, i.e.,

their probability declines exponentially to zero as t → ∞ at a rate controlled by I(q). Sets

that only contain elements of I−1(0) ⊂ ∆(S) are typical – all probability mass concentrates

on these sets asymptotically, and the asymptotic rate of decline of their probability is zero.

For example, for ergodic Markov processes, the only typical set is the singleton containing

12This can be achieved via a change of measure. Consider an i.i.d. stochastic process st whose empirical
measure q has rate function D(q||p), and denote the product measure on sequences κ at maturity t for this
process by Kt. Now consider an alternative process s′t, and assign probability at maturity t to sequences κ with
empirical measure qt proportional to exp(−I(qt)t) exp(D(qt||p)t) × Kt. The second factor in this expression
cancels out the rate function for i.i.d. processes from Sanov’s theorem, and the first factor replaces it with the
rate function I(q). If I(q) ≥ 0 has compact lower contour sets, the resulting process satisfies a large deviation
principle with the required rate function.

13Compact lower contour sets means that {q ∈ ∆(S)|I(q) ≤ x} is compact for all x. The fact that the
rate function has compact lower contour sets ensures that it is lower-semicontinuous, and attains its infimum
on closed sets. This property, when combined with the existence of a large deviation principle, implies that
there exists a q at which the rate function is zero (see Budhiraja & Depuis, 2013, p.9). The large deviations
literature sometimes distinguishes between weak and strong large deviation principles. When the rate function
is ‘good’ (i.e. has compact lower contour sets), these two notions coincide. I follow Budhiraja & Depuis (2013)
in simply defining a large deviation principle as a stochastic process with a ‘good’ rate function.
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the unique stationary distribution of the process – the empirical measure approaches the

stationary distribution with probability 1. For technical reasons my statement of the definition

in (18) is a simplification; requiring the limit in (18) to exist is too strong for some sets (e.g.

if B has measure zero). However, the more complete definition (which amounts to weak

convergence on a logarithmic scale) reduces to this one for e.g. convex sets when the function

I(q) is continuous on its effective domain {q|I(q) < ∞} (La Cour & Schieve, 2015). This

continuity property is satisfied in all familiar models (e.g. Markov processes). Since I will

not have much need for the finer points of the full definition, I refer the reader to Dembo &

Zeitouni (2009) for details.

I summarize my assumptions about the stochastic process that generates risk as follows:

Assumption 2. The sequence of measures on empirical measures {µt}t∈N+ in (13) satisfies

a large deviation principle with rate function I(q).

Conditions on the stochastic process qt that are necessary and sufficient for a large devi-

ation principle to exist are known (Dembo & Zeitouni, 2009), but as I will not use them in

what follows, it is more direct to work with this assumption.14

1.3 Variational representation

Thus far my analysis has focussed on the value a project realizes at a specific maturity t;

cost benefit analysis sums these t-dependent values into total present values, and uses these

to rank projects. I say that a project with return sequence R is realized at maturity t if it

accrues value from t onwards. The value of such a project is

Vt(R;M) =
∞∑
k=0

vt+k(R;M). (19)

where vt(R;M) is given by the expression in (13). A cost-benefit rule for projects that

are realized at maturity t is an ordering on return sequences R generated by Vt(R;M),

for some fixed sequence of stochastic discount factors M, and some stochastic process that

generates risk. The result I have been working towards is a characterization of ‘long run’ cost

benefit rules, i.e., social preferences over projects generated by (monotonic transformations

of) Vt(R;M) in the limit as t → ∞. To state the result I make use of one further definition.

Fixing a stochastic discount factor sequence M, I define a sequence of certainty equivalent

14Note that this assumption is a constraint on the asymptotic behavior of the stochastic process that drives
1-period decay rates of project value λk, and not on project value itself (i.e., vt(R;M)), which is unlikely to
be asymptotically stationary.
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rates of return {ϕt(R,M)}t=1,...,∞ associated with a project R as follows:

R0 exp(tϕt(R;M))E0Π
t−1
k=0Mk := vt(R;M)

⇒ ϕt(R;M) =
1

t
log

[
E0Π

t−1
k=0MkRk+1

E0Π
t−1
k=0Mk

]
. (20)

ϕt(R;M) is the (constant) rate of a return a risk-free project would need to earn to yield

value equal to vt(R;M) (the value of the risky project R) at maturity t. Under Assumption

1 we can re-express ϕt(R;M) in terms of expectations over empirical measures:

ϕt(R;M) = ϕt(R,M) :=
1

t
log

Eµt(q) exp
[
−t
∫
λ(R;M)dq

]
Eµt(q) exp

[
−t
∫
λ(1;M)dq

] . (21)

The central result of this section is the following (all proofs are in the appendix):

Theorem 1. Under Assumptions 1 and 2, the following are equivalent:

(i)

lim
t→∞

1

t
log Vt(R;M) ≥ lim

t→∞

1

t
log Vt(R

′;M)

(ii)

lim
t→∞

ϕt(R,M) ≥ lim
t→∞

ϕt(R
′,M)

(iii)

inf
q∈∆(S)

[∫
λ(R;M)dq + I(q)

]
≤ inf

q∈∆(S)

[∫
λ(R′;M)dq + I(q)

]
, (22)

where I(q) is the rate function associated with the sequence of measures on empirical

measures {µt}t∈N+ in Assumption 2. The limits in (i) and (ii) exist.

This result says that long run present values and long run certainty equivalent rates of

return are ranked consistently, and that both rankings can be represented by the variational

expressions in (22). The rankings in this theorem apply to equivalence classes of return

processes, defined by their long run certainty equivalent rates of return, as part (ii) of the

result makes plain. This is because, while 1
t log Vt is monotonically related to Vt for any finite

t, this is no longer true in the t → ∞ limit, as sub-exponential components of Vt are neglected

by 1
t log Vt in this limit. Assumptions 1 and 2 imply that project values decay exponentially

asymptotically, making a logarithmic transformation of present values the natural choice for

distinguishing between long run projects. Note that the direction of the inequality in part

(iii) is opposite to that in parts (i) and (ii), because project value is inversely related to λ,

the 1-period decay rate of project value (see (13)).
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To get an intuition for part (iii) of the result – the most important and perhaps counter-

intuitive part of it – begin by noticing that from (21),

ϕt(R,M) ≥ ϕt(R
′,M) ⇐⇒ 1

t
log Eµt(q) exp

(
−t

∫
S
λ(R;M)dq

)
≥ 1

t
log Eµt(q) exp

(
−t

∫
S
λ(R′;M)dq

)
.

(23)

Reasoning by analogy to the i.i.d. example above that dµt(q) ∼t→∞ exp(−tI(q))dq, we see

that as t → ∞ the integrand of the expectations in (23) behaves like

exp

(
−t

[∫
S
λ(R;M)dq + I(q)

])
.

Thus the expectations in (23) will be dominated by the terms that decay slowest as t → ∞,

i.e.,

lim
t→∞

1

t
log Eµt(q) exp

(
−t

∫
S
λ(R;M)dq

)
= −

[
inf

q∈∆(S)

∫
S
λ(R;M)dq + I(q)

]
. (24)

A more rigorous treatment of this finding relies on Varadhan’s lemma, a modern incarna-

tion of the Laplace principle that is a cornerstone of large deviation theory. This intuitive

discussion illustrates that the formula (24) is the outcome of a horserace between the de-

creasing probabilities of rare events (which scale like exp(−I(q)t) with t), and their atypical

consequences (which scale like exp(−t
∫
λdq) with t). It is the fact that the measure on em-

pirical measures µt(q) has an exponential dependence on t that causes a failure of uniform

convergence (on an exponential scale) in (24). For example, if I(q) has a unique zero at q∗

(i.e. all probability mass accumulates at q∗ as t → ∞), the measure on empirical measures

µt(q) converges pointwise, but not uniformly, to a Dirac measure δq∗ centered on q∗. Thus,

in general, the limit of expectations is not equal to the expectation of the limit:

lim
t→∞

1

t
log Eµt(q) exp

(
−t

∫
λdq

)
̸= lim

t→∞

1

t
log Eδq∗ exp

(
−t

∫
λdq

)
= −

∫
λdq∗.

The representation of long run cost benefit rules in (22) will be the focus of the remainder

of the paper. I will use the notation ⪰I(q) to denote an instance of the preference ordering

over long run projects in (22), when the stochastic process that generates risk has rate func-

tion I(q). Readers familiar with the literature on ambiguity aversion will recognize that the

preferences ⪰I(q) are reminiscent of Variational Preferences (Maccheroni et al., 2006). The

precise relationship between these two models is discussed in Appendix B. The most impor-

tant technical part of that discussion is that in order for (22) to be an instance of variational

preferences the rate function I(q) must be convex. Appendix B explains that convexity of

the rate function is guaranteed if we impose a natural differentiability condition on long run

cost benefit rules. The large deviations literature has also identified primitive properties of

stochastic processes that ensure convexity of the rate function, see Lemma 4.1.21 in Dembo
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& Zeitouni (2009) for further details. I will assume this condition is satisfied in what follows:

Assumption 3. The rate function I(q) in (22) is convex.

While long run cost benefit rules and variational preferences are formally very closely

related, their interpretations are substantively different. The analogue of the rate function

I(q) in the variational ambiguity model is a penalty function C(q), which captures ambiguity

attitudes. By contrast, the rate function in (22) captures information about risk. Thus the

roles of tastes and beliefs are reversed in these two models. This has important consequences

that I explore in the next section.

Notice that (22) requires us to minimize a functional over all possible probability measures

q ∈ ∆(S). The infimal q in this problem, call it q∗(R;M), will in general vary with the function

λ(R;M).15 Thus we can write the condition in (23) as:∫
S
λ(R;M)dq∗(R;M) + I(q∗(R;M)) ≤

∫
S
λ(R′;M)dq∗(R′;M) + I(q∗(R′;M)).

This comparison involves probability measures, but a different measure is needed for each

project that is being evaluated – there are no stable, project-independent, probabilistic beliefs

that inform preferences in this model. This is a hallmark of a failure of probabilistically so-

phistication (Machina & Schmeidler, 1992). Indeed long run cost benefit rules are generically

non-probabilistic, except when the rate function I(q) has special structure. I investigate the

structure on I(q) needed to give rise to probabilistic preferences in Section 3.

1.4 Long run discount rates

Theorem 1 concerns the preference ordering generated by expected present values for long

run projects, and will be the focus of most of what follows. However, it is also of interest to

study long run discount rates. These quantities are components of cost benefit rules, they do

not generate a preference ordering in themselves. Nevertheless, they provide a useful formal

connection between long run run cost benefit rules and previous work on long run valuation.

Given a return sequence R and stochastic discount factor sequence M, define a project

specific discount rate rt(R;M) at maturity t through:

vt(R;M) := exp(−t rt(R;M))E0Π
t−1
k=0Rk (25)

⇒ rt(R;M) = −1

t
log

[
E0Π

t−1
k=0MkRk+1

E0Π
t−1
k=0Rk+1

]
.

The risk-free discount rate at maturity t is the special case of rt(R;M) in which Rt = 1 for

sure for all t.
15I assume that the infimum is attained in this discussion. This can be proved under mild conditions on

I(q) (Budhiraja & Depuis, 2013), but the points I make here about probabilistic sophistication do not depend
on these assumptions.
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Proposition 1. Under Assumptions 1 and 2,

lim
t→∞

rt(R;M) = inf
q∈∆(S)

[∫
S
λ(R;M)dq + I(q)

]
− inf

q′∈∆(S)

[∫
S
λ(R; 1)dq′ + I(q′)

]
. (26)

This proposition demonstrates that, in addition to their role in long run cost benefit rules,

variational formulas of the type in (22) are important for understanding long run discount

rates.

The comparative exercises that are meaningful for discount rates are however different

from those that are meaningful for returns. Since discount rates must be combined with

information about undiscounted returns to yield a ranking of projects (this is what cost

benefit rules do, see (25)), it is not meaningful to compare project-specific discount rates

associated with different return processes, unless we hold a measure of undiscounted returns

fixed in this comparison. The long run undiscounted rate of return is represented by the

second term in (26). Thus, a comparison of this kind boils down to

inf
q∈∆(S)

[∫
S
λ(R; 1)dq + I(q)

]
= inf

q∈∆(S)

[∫
S
λ(R′; 1)dq + I(q)

]
⇒

lim
t→∞

rt(R;M) ≥ lim
t→∞

rt(R
′;M) ⇐⇒ inf

q∈∆(S)

[∫
S
λ(R;M)dq + I(q)

]
≥ inf

q∈∆(S)

[∫
S
λ(R′;M)dq + I(q)

]
.

This is of course the mirror image of the ordering generated by long run cost benefit rules.

Alternatively, another meaningful comparative exercise for discount rates could be to hold

the return process fixed, but vary the stochastic discount factor. In this case we have

lim
t→∞

rt(R;M) ≥ lim
t→∞

rt(R;M′) ⇐⇒ inf
q∈∆(S)

[∫
S
λ(R;M)dq + I(q)

]
≥ inf

q∈∆(S)

[∫
S
λ(R;M ′)dq + I(q)

]
.

This is again a mirror image long run cost benefit rule, but this time with the roles of R and

M interchanged. The special case R = 1 corresponds to a comparison of risk-free long run

discount rates for different stochastic discount factors. This shows that comparisons of long

run risk free discount rates under different discounting schedules are formally identical to long

run cost benefit rules. It is in this sense that this model provides a substantial generalization

of the insights of Weitzman (1998, 2001), and the many subsequent commentaries on his

approach. Weitzman and his followers focus on long run risk free discount rates but, as

noted in the introduction, the models of risk that have been the focus of this literature are

static, i.e., risk resolves after a single period, it has no non-trivial dynamics. However, as the

formula above makes plain, the asymptotic dynamics of the stochastic process that generates

risk, captured by the rate function I(q), will generally strongly affect long run discount

rates. The variational formalism developed above provides a tractable and general framework

for analyzing long run discounting – as I have noted, a wide variety of empirically relevant

stochastic processes satisfy Assumptions 1 and 2. In the remainder of the paper I will focus on
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long run cost benefit rules themselves, with the understanding that any properties established

for these preference relations on returns have direct implications for long run discount rates

via Proposition 1.

***

In some respects, long run cost benefit rules are simpler than standard cost benefit rules.

Instead of having to rank full dynamic stochastic streams of returns (as required by standard

expected present values), all dynamical information is compressed into the rate function in

long run cost benefit rules. They can, in effect, be treated as static preferences.16 However,

they are unusual objects, that behave quite differently from more familiar preferences based

on expectations.

In the next two sections I study questions that help to elucidate the structure and inter-

pretation of long run cost benefit rules. In Section 2, I define and characterize a notion of long

run stochastic dominance, i.e., a ranking of risks induced by long run cost benefit rules. I show

that long run stochastic dominance can be conceptualized as a generalized non-parametric

ranking of ‘long run risk’ (Duffie & Epstein, 1992), i.e., the persistence of stochastic processes.

In addition, given the unusual variational form of long run cost benefit rules, a natural ques-

tion is if and when they reduce to something more recognizable. Under what conditions are

they probabilistic, and can those conditions be expected to hold in practice? I investigate

this question in Section 3, and show its relevance for understanding the distinctions long run

cost benefit rules draw between stochastic economies with probabilistically identical long run

statistics.

2 Long Run Stochastic Dominance

Stochastic dominance allows us to rank risks for large classes of preferences. For example, in

the case of expected utility theory, risks that are ordered by first order stochastic dominance

can be ranked for any increasing utility function, and those that are ordered by second order

stochastic dominance are ranked for any increasing and concave utility function.

There is no obvious analogue of the utility function in the variational representation of

cost benefit rules (22). The form of this representation is determined by the structure of

the cost benefit rule itself, which does not admit a richer set of attitudes to e.g. temporal

fluctuations in value, which could be used to introduce nonlinearities into the expectation

terms in (22). Preferences enter into this representation indirectly via the 1-period rates of

discounted return λ, which incorporate stochastic discount factors, and hence capture social

marginal rates of substitution. But viewed as a risk preference over λ, the only way we can

define a broad class of such preferences to use as basis for a stochastic dominance relation is

in terms of sets of the functions λ themselves. That is the approach I take in this section.

16Similarly, variational preferences arose as a model of ambiguity aversion in static choices
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2.1 Definition and characterization

To begin to state a result in this direction, I first need to weaken a technical assumption

I have been working with until now, i.e., that the functions λ are positive valued. In this

section I will allow λ to be any bounded and continuous function from S to R, including
negative valued functions. The only place I have used the positivity of λ was in showing that

the limiting present values limt→∞
1
t log Vt and certainty equivalent rates of return limt→∞ ϕt

in Theorem 1 rank returns consistently. If λ may be negative, Vt does not exist in general, so

this result does not hold. However, when λ is negative, and Assumption 2 holds, maturity t

project value vt still grows exponentially as t → ∞. While the present values Vt are undefined

in this case, certainty equivalent rates of return ϕt are perfectly well defined, and continue to

provide a meaningful ranking of projects in the t → ∞ limit. Of course, the t → ∞ limit is

really the only maturity that matters when project value grows with maturity, so long run

cost benefit rules can be thought of as the only relevant cost benefit rules in this case. Thus,

the introduction of negative λ comes at no cost to the conceptual foundations of the problem

I study, and provides a useful generalization to projects whose returns overwhelm the effects

of discounting.

Denote the set of bounded and continuous functions from S to R by Cb(S). As our

discussion of Theorem 1 showed, certainty equivalent rates of return ϕt can be expressed as

(see (23))

ϕt(µt, λ) :=
1

t
log

Eµt(q) exp
[
−t
∫
λdq

]
Eµt(q) exp

[
−t
∫
λ1dq

] , (27)

where λ = λ(R;M) ∈ Cb(S), λ1 = λ(1;M) ∈ Cb(S). For reasons that will become clear, this

notation emphasizes the dependence of ϕt on the measure on empirical measures µt and the

1-period rate of discounted return λ, rather than R and M .

Definition 1. Let {µt} and {νt} (t ∈ N+) be sequences of measures on empirical measures

for stochastic processes that satisfy Assumptions 2 and 3, with rate functions Iµ(q) and Iν(q)

respectively. I say that {µt} long run stochastically dominates {νt} if

lim
t→∞

ϕt(µt, λ) ≥ lim
t→∞

ϕt(νt, λ) (28)

for all λ ∈ Cb(S), where ϕt(·, λ) is defined in (27).

It is instructive to think about what a stochastic order based on such a class of preferences

would look like in expected utility theory. The analogous condition for expected utilities – a

kind of ‘zeroth order’ stochastic dominance – would be to require that for probability measures

pµ, pν on S, EpµU ◦ y ≥ EpνU ◦ y for all bounded, continuous utility functions U : O → R
and acts y : S → O (the composition U ◦ y is the analogue of λ). This can be seen to require

pµ(A) ≥ pν(A) for all A ⊂ S. But since we also have
∫
S dpµ =

∫
S dpν = 1, this implies
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pµ = pν , and hence this notion makes no meaningful distinction between risks in expected

utility theory, i.e., zeroth order stochastic dominance is trivial.

And yet, this order is not trivial for long run cost benefit rules. In that case all risk is

measure zero; moreover, preferences are sensitive to measure zero events. Thus we can have

some hope that ranking a measure of the relative ‘size’ of measure zero sets, as captured

by rate functions, will be a non-trivial exercise. The crucial feature of long run cost benefit

rules that allows for this possibility is that we do not need to impose the constraint that

probabilities sum to 1. Since the contribution of risk to long run values is entirely through

measure zero events, it is possible for rate functions (the long run analogues of probability

measures) to be uniformly ordered without falling foul of that constraint.

The next result provides a characterization of long run stochastic dominance:

Proposition 2. {µt} long run stochastically dominates {νt} if and only if

∀q ∈ ∆(S), Iµ(q) ≤ Iν(q). (29)

This result is a consequence of Fenchel-Moreau duality – see Appendix C.

Readers familiar with the ambiguity literature may recognize a similarity between this

result and a dual concept in the variational ambiguity model. Recall that the analogue of

our rate function I(q) in that model is a penalty function C(q), which captures ambiguity

attitudes. Maccheroni et al. (2006) define a dominance relation on ambiguity attitudes,17 with

higher ranked preferences being ‘more ambiguity averse’. Their definition is conceptually and

technically different from long run stochastic dominance, but is characterized by a dominance

relation on penalty functions C(q) that is analogous to (29). Thus we see that variational

ambiguity preferences and long run cost benefit rules are again mirror images of one another,

with the roles of ambiguity attitudes and risk interchanged. Appendix B explains their result

in further detail.

2.2 Markovian example

Long run stochastic dominance is a novel concept, so it is helpful to see how it applies to

familiar stochastic processes to build intuition for its meaning. Consider a Markov chain

on a discrete state space SN with N elements, and denote its transition matrix by T. I

assume that the chain is ergodic, i.e., the matrix T is primitive.18 Such Markov chains have

a unique globally asymptotically stable stationary distribution π⃗ given by the solution of the

eigenvector problem

π⃗T = π⃗.

17This is a ranking of attitudes for a large class of risks, contrary to stochastic dominance, which is a ranking
of risks for a large class of attitudes.

18T is primitive if there exists an integer k such that Tk > 0.
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By the Perron-Frobenius theorem, π⃗ has strictly positive elements, which can be normalized

to sum to 1.

I denote the set of primitive transition matrices that have stationary distribution π⃗ by

Ω(π⃗). I show in Appendix D that Ω(π⃗) is the convex hull of N2−N−1 extremal matrices. By

definition, all the Markov chains in Ω(π⃗) have identical long run behavior from the perspective

of classical risk measures, as they have identical stationary distributions that are approached

with probability 1 – this is a consequence of ergodicity. Nevertheless, we have the following

result:

Proposition 3. Long run stochastic dominance is a complete order on Ω(π⃗) when N = 2.

When N > 2 there exist convex subsets of Ω(π⃗) on which long run stochastic dominance is a

complete order.

As a simple illustration of this proposition, consider an economy with state space S2 =

{1, 2}, and state dynamics given by the ergodic Markov transition matrix T. Consider any

2× 2 diagonal matrix Λ with diagonal element Λss > 0 representing the value of exp(−λ(s))

in (8). Long run certainty equivalent rates of return in this economy are ordinally equivalent

to the spectral radius (i.e. largest eigenvalue) of matrices of the form TΛ; I denote such

spectral radii by ϱ(TΛ).19 Consider the following transition matrices:

T(a) =

(
a 1− a

1− a a

)
, (30)

where a ∈ (0, 1). These matrices have a common stationary distribution – (0.5 0.5) – that

describes their long run behavior with probability 1. Nevertheless, Proposition 3 and its proof

shows that the stochastic process generated by T(a) long run stochastically dominates the

process generated by T(a′) whenever a > a′. This implies that for any Λ and a > a′,

ϱ(T(a)Λ) ≥ ϱ(T(a′)Λ),

with equality only when Λ11 = Λ22. Thus, even though the state dynamics associated with

T(a) give rise to identical long run statistics for any a (with probability 1), the long run

certainty equivalent rate of return of any risky asset is higher under T(a) than T(a′) when

a > a′.

2.3 Long Run Stochastic Dominance and Persistence

Examining the matrices T(a) in (30), it is clear that the effect of an increase in a is to

increase the persistence of the Markov chain. This is suggestive of a more general relationship

between long run stochastic dominance and increases in persistence. The notion of persistence

19See Footnote 3 for an explanation of this fact.
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that is relevant here can be formalized in terms of a class of attitudes to long run risk, a

concept that has its origins in the work of Duffie & Epstein (1992). A decision maker is long

run risk loving if for any random variable that takes the value si with probability pi, they

prefer the single lottery over constant sequences ((si, si, si . . .); pi) to the sequence of lotteries

((si; pi), (si; pi), (si; pi), . . .).

It will be much more instructive for our purposes to express this requirement in terms of

the sample paths of stochastic processes. Let µi.i.d.
t (q) be the measure on empirical measures

q at maturity t for an arbitrary i.i.d. stochastic process whose realization st at time t is in

S.20 Similarly, define

µcert
t (q) =

{
pi q = δsi
0 otherwise

where again δsi is the Dirac measure on S centered on si. Clearly then, we have

∀t ∈ N+,

∫
∆(S)

q(si)dµ
i.i.d.
t (q) = pi =

∫
∆(S)

q(si)dµ
cert
t (q)

and the definition of long run risk loving behavior amounts to

µcert
t (q) ≻ µi.i.d.

t (q)

as t → ∞. This framing of the definition makes the parallels between long run risk and

‘conventional’ static risk clear: we are comparing two measures over empirical measures that

share a stationary ‘marginal measure’ (si, pi), but where µcert
t (q) is a marginal preserving

spread of µi.i.d.
t (q). In fact, µcert

t (q) is a ‘maximal’ marginal preserving spread of µi.i.d.
t (q), since

it only places weight on extremal points in ∆(S), i.e. the Dirac measures centered on si.

By generalizing the kinds of marginal preserving spreads that are considered, we can

use this sample-paths perspective on long run risk loving behavior to motivate a dominance

ordering of long run risk, or persistence. By way of analogy, recall that in expected utility

theory an agent is risk loving if they prefer facing a lottery to receiving its expected value –

this is equivalent to the agent having a convex von Neumann-Morgenstern utility function.

This definition immediately generates a stochastic dominance ordering: we can say that risk

A dominates risk B if they have the same expected value, and A is weakly preferred to B by all

risk loving agents with expected utility preferences. Similarly, we can turn the notion of long

run risk loving preferences into an ordering of stochastic processes by identifying risks that

are ranked consistently by all long run risk-loving preferences within a given class. I focus on

the class of long run risk-loving preferences that can be expressed as expected utilities over

20This measure can be written down explicitly:

µi.i.d.
t (B) =

∫
B⊆∆(S)

{
t!

(tq1)!···(tqk)!
∏k

i=1 p
tqi
i , qi ∈ { 1

t
, 2
t
, . . . , t

t
}

0 otherwise

}
dq

.
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empirical measures – this allows for the development of a theory that closely mirrors static

second order stochastic dominance. An important consequence of this restriction is that the

preferences in this class are indifferent to the ordering of states in deterministic sequences that

share the same empirical measure – they do not exhibit impatience, consumption smoothing

etc. This class of preferences thus focuses solely on long run risk; if instead preferences

exhibited an intrinsic order dependence, one lottery over sequences could be preferred to

another for reasons other than differences in their persistence.

Given this restriction on long run risk-loving preferences, a natural first attempt at a

definition of when one stochastic process with sequence of measures on empirical measures

{µt} ‘long run risk dominates’ another with the sequence of measures {νt} might be:

1̃.

∀t ∈ N+, ∀A ⊆ S,
∫
∆(S)

q(A) dµt(q) =

∫
∆(S)

q(A) dνt(q) (31)

2̃.

∀t ∈ N+,

∫
∆(S)

Φ (q) dµt(q) ≥
∫
∆(S)

Φ (q) dνt(q) (32)

for all convex functions Φ : ∆(S) → R.

The first condition is equality of marginal measures (the analogue of equal expected values

in second order stochastic dominance). At a fixed t, the second condition requires dominance

with respect to all convex expectations over q; this is equivalent to µt being a marginal

preserving spread of νt.
21 The convex expectations in (32) are precisely the long run risk-

loving preferences that can be represented as ‘expected utilities’ over empirical measures.

While this definition is perfectly sensible as a behavioral requirement, it unfortunately has

a number of serious problems for the purposes of defining a dominance relation on stochastic

processes. First, except in highly specialized cases such as comparing µcert
t to µi.i.d.

t , we cannot

expect stochastic processes to have stationary marginal distributions, or to reveal information

about their persistence uniformly across time and initial conditions. For example, for Markov

processes, the marginal measure on S at t varies with t, and the measure on empirical measures

at a fixed t (and its dynamics over time) depend on the initial conditions of the process. This

suggests that requiring the conditions in (31–32) to hold for all t > 0 is much too demanding.

At least for the purposes of generating a dominance relation on stochastic processes, the

definition of long run risk loving behavior must be modified to allow for a richer set of

dynamic comparisons. The natural solution to this difficulty is to weaken the requirements

(31–32) to hold asymptotically as t → ∞. Any notion of long run risk dominance that results

from such an approach will not depend on finite snippets of sequences, which may be non-

representative of correlations in full sample paths of the stochastic process, and in addition

21A formally similar set of conditions is at the heart of Blackwell’s characterization of the informativeness
of experiments (Blackwell, 1953).
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may be independent of initial conditions if the processes in question are weakly dependent.

Having made that adjustment, we run into a second difficulty: vacuity of the definition.

To illustrate, consider again the case of ergodic Markov chains, and suppose that Φ is any

bounded and continuous function. Then clearly any Markov chains that share a stationary

distribution q∗ are not strictly ordered by this definition since we have

lim
t→∞

∫
∆(S)

Φ (q) dµt(q) = Φ(q∗)

for any µt(q) that weakly converges to a Dirac measure centered on q∗ as t → ∞. The problem

here is that the asymptotic differences between say the Markov chains in (30) are not visible

to the convex expectation for fixed Φ. The atypical events that include all the information

about differences in persistence between these chains need to be ‘amplified’ to an exponential

scale in t to contribute to the rankings; this is not possible for fixed Φ.

This problem suggests a further weakening of the second requirement in our candidate

definition. Instead of requiring the ranking to hold for any fixed convex function Φ, I consider

a ranking based on sequences of convexity preserving transformations of convex expectations

that match the asymptotic behavior of the measures µt(q), νt(q).

Formally, a sequence of measures on empirical measures {µt} satisfies a large deviation

principle with ‘speed’ at (a sequence in R with limt→∞ at → ∞) if there exists a rate function

I(q) such that

lim
t→∞

1

at
logµt(B) = − inf

q∈B
I(q)

for ‘nice’ sets B ⊂ ∆(S) where the limit exists. Once again I am presenting a simplified

version of the full definition of a large deviation principle; the goal is merely to observe that

we can admit a wide variety of asymptotic behaviors for µt(q); we only require dµt(q) ∼
exp(−atI(q))dq as t → ∞ for arbitrary speed at, which need not be linear in t.

Definition 2. A sequence of strictly increasing and convex functions ft : R → R is said to

match a sequence of measures on empirical measures {µt} that satisfies a large deviation

principle with speed at if

lim
t→∞

1

at
log ft(x) = f̄(x), locally uniformly on R,

where f̄ : R → R is a strictly increasing and convex function.

These properties of the limiting function f̄ ensure that the following definition captures

an asymptotic notion of a marginal preserving spread on ∆(∆(S)):

Definition 3. A stochastic process on S with a sequence of measures on empirical measures

{µt} long run risk dominates another with the sequence of measures on empirical measures

{νt} if
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1. {µt} and {νt} satisfy large deviation principles with speeds aµt , a
ν
t respectively, and

lim
t→∞

aµt /a
ν
t = 1.

2.

lim
t→∞

∫
∆(S)

q(A) dµt(q) = lim
t→∞

∫
∆(S)

q(A) dνt(q), ∀A ⊆ S where the limits exist

3. There exists a sequence of functions ft : R → R that matches the large deviation

principles for µt, νt such that, for any convex Φ : ∆(S) → R,

lim
t→∞

f−1
t

(∫
∆(S)

ft(Φ (q))dµt(q)

)
≥ lim

t→∞
f−1
t

(∫
∆(S)

ft(Φ (q))dνt(q)

)
.

The first condition requires the two stochastic processes to be asymptotically compara-

ble, i.e. they obey large deviation principles with the same asymptotic speed. The second

condition says that the marginal measures on S associated with µt, νt must agree asymptoti-

cally.22 The third condition says that µt is a ‘transformed’ marginal preserving spread of νt

asymptotically when viewed on an appropriate t-dependent scale that makes the convex test

functions Φ(q) of comparable ‘size’ to dµt(q) as t → ∞. This is clearly a stronger constraint

than merely requiring untransformed asymptotic convex expectations to be ranked. Note that

ft(Φ(q)) is always convex in q when ft is strictly increasing and convex; thus the functions

ft(Φ(q)) (and their logarithmic limit) preserve convexity but introduce a t-dependence that

allows the details of the asymptotic behavior of the measures µt, νt to be resolved.

With this definition in place, the relationship between long run risk dominance and long

run stochastic dominance becomes clear:

Proposition 4. Consider two sequences of measures on empirical measures {µt}, {νt} (t ∈
N+), that obey Assumptions 2 and 3. Denote their rate functions by Iµ(q), Iν(q) respectively.

If Iµ(q) and Iν(q) each have a unique zero, {µt} long run stochastically dominates {νt} ⇒
{µt} long run risk dominates {νt}.

Essentially, for processes satisfying the conditions in this proposition, long run stochas-

tic dominance is the special case of long run risk dominance in which the speeds aµt , a
ν
t are

asymptotically linear in t, and the convex transformations ft(x) = exp(tx).23 The domi-

nance requirement on rate functions (29) that characterizes long run stochastic dominance is

22If, for example, Iµ(q) has a unique minimizer q∗, then limt→∞
∫
q(A)dµt(q) = q∗(A) if and only if q∗(∂A) =

0, where ∂A is the boundary of A. Hence the restriction to sets where the limit exists; this rules out sets with
discontinuities at their boundaries. This qualifier may be dispensed with if S is discrete, as the limits always
exist in that case.

23The minus sign in the exponent in (27) is irrelevant, since we require this condition to hold for all λ ∈ Cb(S).
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sufficient to rank limits of (transformed) expectations of all convex functionals of the empir-

ical measure (i.e., Φ(q)), not just the linear functionals (i.e.,
∫
λdq) used to define long run

stochastic dominance.

A consequence of this fact is that for stochastic processes with strictly convex rate func-

tions (which ensures the uniqueness of rate function zeros), long run stochastic dominance

yields a generalized ranking of the persistence of these processes. Ergodic Markov processes

such as those in Section 2.2 are examples of stochastic processes that have strictly convex

rate functions.

3 When are long run cost benefit rules probabilistic?

The fact that long run cost benefit rules need not be probabilistic might be superficially

surprising, as they are defined as limits of expected present values. Indeed, if the stochastic

process st that generates risk is an i.i.d. sequence of random variables, it is immediate from

(9) that project value at t is given by

viidt (λ(R;M)) = R0 [Es exp(−λ(R;M)(s))]t .

and hence from (19) the expected present value Vt of projects realized at t satisfies

lim
t→∞

1

t
log Vt(λ(R;M)) = log(Es exp(−λ(R;M)(s))).

In this case the long run cost benefit rule is clearly ordinally equivalent to an expected utility

preference over the random variable s. We have also seen that in the i.i.d. case Sanov’s

theorem tells us that the large deviations rate function for the empirical measure q is given

by the relative entropy. In its general form, given p, q ∈ ∆(S), the relative entropy of q with

respect to p is

D(q||p) =

{ ∫
S log

(
dq
dp

)
dq q ≪ p

∞ otherwise
(33)

where q ≪ p means that q is absolutely continuous relative to p. This is a generalization of

the binary expression in (16). From the proof of Theorem 1, it is immediate that

log Es exp(−λ(s)) = − inf
q∈∆(S)

[∫
S
λdq +D(q||p)

]
. (34)

This expression is known as the Donsker-Varadhan variational formula for the cumulant; it

forms the basis for the analysis in Robson et al. (2023). This begs two questions: are there

other rate functions for which long run cost benefit rules reduce to expected utility theory, or

more generally any probabilistic preference? In addition, what causes long run cost benefit

rules to fail to be probabilistic?
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3.1 Rearrangement invariance

To begin to address these questions, notice that the requirement that preferences be ‘proba-

bilistic’ is really a symmetry property – it says that if two acts yield the same distribution of

consequences according to some probability measure p we should be indifferent between them.

Formally, a preference over generic acts f, g : S → O with symmetric part ∼ is probabilistically

sophisticated if there exists a probability measure p ∈ ∆(S) such that

[∀y ∈ O, p({s ∈ S|f(s) = y}) = p({s ∈ S|g(s) = y})] ⇒ f ∼ g. (35)

Probabilistic sophistication, initially defined in Machina & Schmeidler (1992), allows us to

describe beliefs using a probability distribution on S, but is much more general than expected

utility theory (which requires preferences to be linear in probabilities).

To begin to investigate the implications of this symmetry requirement for the rate function,

I start with a definition:

Definition 4. Fix probability measures q, q′, p ∈ ∆(S). We say that q′ is a rearrangement of

q relative to p if there is a measurable bijection π : S → S such that ∀A ⊆ S:

1. p(π(A)) = p(A) (i.e., π preserves p)

2. q′(A) = q(π(A))

The bijections π in this definition are just permutations of the state space that don’t

disturb the probability masses of events under p. If S is finite, π just permutes any subset of

states S for which ∀i, j ∈ S, pi = pj . A rate function I(q||p) is rearrangement invariant relative

to p if for any two measure q, q′ that are rearrangements relative to p, I(q||p) = I(q′||p). As

long as the set of permutations that preserve p is rich enough, there is a tight connection

between rearrangement invariance and probabilistic sophistication

Proposition 5 (Maccheroni et al. (2006)). For non-atomic p, or p uniform on finite S,
I(q||p) rearrangement invariant relative to p ⇐⇒ ⪰I(q||p) is probabilistically sophisticated.

In the case of a finite state space SN , the set of permutations that preserve a probability

vector p⃗ ∈ ∆(SN ) is usually trivial, since pi is generically unique for each state i ∈ SN . The

only permutation that preserves p⃗ is the identity in this case, and so rearrangement invariance

places no constraints on preferences.24 This limitation arises because rearrangement invari-

ance is a local property: it constraints the behavior of the rate function at a fixed vector p⃗.

This feature is an advantage in applications of variational preferences to ambiguity aversion,

where p⃗ can be considered a fixed part of an agent’s behavioral endowment. For long run cost

benefit rules however, p⃗ arises as part of the long run behavior of a stochastic processes, and

24This is one reason why the definition of probabilistic sophistication in Machina & Schmeidler (1992)
assumes a non-atomic state space.
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we can always consider families of such processes that give rise to different p⃗. In this context

it is sensible to investigate global symmetries that ensure consistency within a family of pro-

cesses indexed by different, but related, values of p⃗. Such global symmetries are meaningful

constraints on families of stochastic processes, whether the state space is finite or not. For the

sake of notational simplicity, I discuss the case of finite S below; the extension to non-atomic

measures is straightforward.

3.2 State-label invariance

For any vector p⃗ ∈ ∆(SN ) and permutation σ of SN , define p⃗ ◦ σ := (pσ(1), . . . , pσ(N)). A

condition that captures when a family of long run cost benefit rules indexed by θ ∈ Θ is

probabilistic is the following:

Definition 5. A family of long run cost benefit rules {⪰Iθ(q⃗||p⃗(θ))}θ∈Θ on a finite state space

SN is state-label invariant if

1. ∃ θ ∈ Θ with p⃗(θ) = r⃗ ⇒ for any permutation σ of SN , ∃ θ′ ∈ Θ with p⃗(θ′) = r⃗ ◦ σ.

2. For any θ, θ′ ∈ Θ such that

p⃗(θ′) = p⃗(θ) ◦ σ

for some permutation σ of SN ,

f ⪰Iθ(q⃗||p⃗(θ)) g ⇐⇒ f ◦ σ ⪰Iθ′ (q⃗||p⃗(θ′)) g ◦ σ

for any acts f, g.

State-label invariant families include not just the rule ⪰I(q⃗||p⃗) for fixed p⃗, but rules indexed

by all permutations of p⃗. In addition, rules related by a permutation σ of the state space are

required to rank σ-permuted acts consistently. Like probabilistic sophistication, this precludes

the labels of states from mattering, only the distribution of payoffs matters for preferences.

Unlike the definition of probabilistic sophistication in (35) however, this requirement places

meaningful constraints on preferences even if the state space is discrete and p⃗ is non-uniform.

If the index set Θ maps only to a single probability vector p⃗ and its permutations, and the

associated preference family is state-label invariant, this family essentially encodes a single

probabilistic preference, up to permutations. However, in general the mapping from Θ to a

probability vector p⃗ may be many-to-one, and state-label invariance is required to hold over

the entirety of Θ.

The following result characterizes state-label invariant families of long run cost benefit

rules:
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Proposition 6. A family of long run cost benefit rules {⪰Iθ(q⃗||p⃗(θ))}θ∈Θ is state-label invariant

if and only if for any θ, θ′ ∈ Θ such that p⃗(θ′) = p⃗(θ) ◦ σ for some permutation σ of SN ,

Iθ′(q⃗ ◦ σ||p⃗(θ′)) = Iθ(q⃗||p⃗(θ)). (36)

This result shows that there are two ways in which preference families can fail to be state-

label invariant. First, the rate function may fail to be invariant under joint permutations of

q⃗ and p⃗. Second, the mapping from the index set Θ to probability vectors in ∆(SN ) may be

many-to-one, and the rate function may vary on sets {θ ∈ Θ|p⃗(θ) = r⃗}.
A canonical example of preferences that are state-label invariant is the family generated

by f -divergences:

If (q⃗ ||p⃗) =

{ ∑
i∈SN

qif
(
pi
qi

)
q⃗ ≪ p⃗

∞ otherwise
(37)

where f : R+ → R+ is a convex function with f(1) = 0 (relative entropy is the case f(t) =

t log t). The preference family corresponding to the set

H(p⃗) = {If (q⃗||p⃗ ◦ σ)|σ permutes SN}

is clearly state-label invariant, as indeed is the family corresponding to
⋃

p⃗>0H(p⃗). This tells

us that there is an entire family of long run cost benefit rules associated with f -divergences,

indexed by arbitrary probability vectors p⃗, that is probabilistic.

On the other hand, an important example of a preference family that is not state-label

invariant is the collection generated by the rate functions of ergodic Markov chains that share

a stationary distribution p⃗. As in Section 2.2, let Ω(q⃗) be the set of primitive transition

matrices that has the stationary distribution q⃗ = (q1, . . . , qN ) ∈ ∆(SN ). The transition

matrix for a generic chain in Ω(q⃗) is denoted by Q. Using the ‘chain rule’ for relative entropy,

it can be shown (see Budhiraja & Depuis, 2013, Ch. 6.4) that the (convex) rate function for

the empirical measure q⃗ of an ergodic Markov chain with transition matrix P ∈ Ω(p⃗) is given

by

IP(q⃗||p⃗) =

{
infQ∈Ω(q⃗)

∑
iD(Qi,·||Pi,·)qi q⃗ ≪ p⃗

∞ otherwise
. (38)

Consider the family of preferences induced by

J(P) :=
{
IΣPΣ−1(q⃗ || p⃗Σ−1)|Σ any N ×N permutation matrix

}
.

This family is again state-label invariant – the Markov chain’s dynamics are invariant to
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relabelings of the state space. However, now consider the collection induced by

J (p⃗) =
⋃

P∈Ω(p⃗)

J(P).

Each of the preferences in this collection has stationary distribution equal to a permutation

of p⃗, and the empirical measure of any chain in J (p⃗) converges to a permutation of p⃗ with

probability 1. But J (p⃗) is not state-label invariant. This occurs since the rate function (38)

varies on the set Ω(p⃗). One way to see this is that transition matrices in Ω(p⃗) have (N − 1)2

free parameters,25 and the relative entropy factors in (38) vary continuously over Ω(p⃗). Thus

when N ≥ 2, we can find an infinite number of matrices that share the stationary distribution

p⃗, but yield different rate functions; this violates the state-label invariance condition (36).

3.3 Behavioral implications

To see the implications of failures of state-label invariance, consider again the example of two

state ergodic Markov chains on a state space S = {Red,Black} with the transition matrices

T(a) in (30). All such matrices have the stationary distribution u⃗ = (0.5 0.5). In addition,

because each chain is state-label invariant for any fixed value of a, the long run cost benefit

rule ⪰IP(a)(q⃗||u⃗) is indifferent between projects whose 1-period rates of discounted return λ are

permutations of one another. Thus, if we define two projects λRed
a , λBlack

a with

λRed/Black
a (s) =

{
1 s = Red/Black in chain T(a)

0 otherwise
(39)

we have

λRed
a ∼IT(a)(q⃗||u⃗) λ

Black
a (40)

for any a ∈ (0, 1). Now consider an agent who can choose amongst projects in different

economies, indexed by a; denote the asymmetric and symmetric parts of this agent’s meta-

preference relation by ⪰,∼ respectively. If the family of long run cost benefit rules induced by

{IT(a)(q⃗||u⃗)} were state-label invariant relative to the probability vector u⃗, the set of relations

(40) would further imply, for example,

λRed
a ∼ λRed

a′

for any a, a′ ∈ (0, 1). This follows since each value of a maps to the same probability vector

u⃗; state-label invariance thus requires consistency across all values of a. However, by long

25The set of N ×N matrices has dimension N2, but row sums must equal 1 (N constraints), and we have
N − 1 further constraints from the stationarity condition p⃗P = p⃗ (N equations, but one is redundant since∑

i pi = 1). N2 −N − (N − 1) = (N − 1)2.
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run stochastic dominance (see Proposition 3), we actually have

a > a′ ⇒ λRed
a ≻ λRed

a′ . (41)

Thus, even though the asymptotic empirical frequency of Red is 0.5 with probability 1 for

any a, we strictly prefer long run bets in economies with larger values of a to equivalent bets

in economies with smaller values of a.

Readers familiar with the ambiguity literature may realize that this example is formally

related to a sequential version of Ellsberg’s ‘Two Urn’ decision problem (Ellsberg, 1961). In

that problem Urn I contains 50 red and 50 black balls, and Urn II contains 100 balls, each or

which is red or black, in unknown proportions. A ‘Red’ bet pays out $1 if a red ball is drawn

and zero otherwise, and a ‘Black’ bet pays out $1 if a black ball is drawn and zero otherwise.

Assuming that balls will be drawn uniformly at random from each urn, the modal preferences

in Ellsberg’s experiment are:

Red on Urn I ∼ Black on Urn I

Red on Urn II ∼ Black on Urn II

Red on Urn I ≻ Red on Urn II

These preferences cannot be probabilistically sophisticated. If they were, indifference in the

first two choices would reveal a 50% subjective probability that the drawn ball will be Red

in both Urn I and Urn II. Probabilistic sophistication then requires indifference on the third

choice as well, contrary to the stated preference. The standard interpretation of this finding

is that people are ambiguity averse – they are sensitive to the subjective uncertainty over the

composition of Urn II, and do not reduce the compound lottery over subjective uncertainty

(share of Red balls in Urn II) and objective risk (chance of Red conditional on Urn II’s

composition) to a single lottery.

Suppose that we replace this one-shot decision problem with one in which sequences

of balls are drawn from two sequences of urns. The first sequence (I) contains infinitely

many copies of Ellberg’s Urn I, and the second sequence (II) contains infinitely many urns,

each of whose composition is unknown (and not necessarily constant across urns). Assume

that payoffs accumulate multiplicatively across draws, so that Ellsberg-style choices become

choices between ‘projects’ of the kind in (39), in the two sequences of urns. Because this

setting preserves the symmetry of payoffs and information states, the choice between e.g.

λRed
I and λRed

II is isomorphic to Ellsberg’s original choice problem.

The fact that long run cost benefit rules may be non-probabilistic offers an alternative

explanation for the preference λRed
I ≻ λRed

II in this sequential Ellsberg problem: non-trivial

dynamical beliefs. Sequential draws from Urn I are verifiably i.i.d. (one simply looks inside

the urns before a sequence of balls is drawn), and so there is no rational basis for believing
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that outcomes are correlated across urns. Restricting attention to beliefs consistent with T(a)

for some a, this implies that we can model beliefs about the Urn I sequences as a = 0.5, the

i.i.d. case. In contrast, because it is impossible to verify the composition of urns in the second

sequence ex-ante, there is nothing to restrict the agents’ dynamical beliefs in this case. The

agent could fear that the experimenter will ‘cheat’ by conditioning the composition of Urn

II at time t on information at time t − 1, e.g. the colors of previous balls drawn. Because

of the impossibility of verifying that Urn II draws are i.i.d. (revealing the composition of an

urn destroys the state of uncertainty that the experiment is designed to achieve), there is no

way for the experimenter to allay these fears. For example, there is nothing to prevent beliefs

being described by T(a) for a < 0.5, i.e. negatively correlated draws. As we have seen (41),

if decision-makers care about long run returns, this would cause them to prefer a bet on the

Urn I sequence to a bet on the Urn II sequence.

This argument is so far particular to the sequence version of the Ellsberg experiment, but,

by modifying the arguments in Robson et al. (2023), it can be turned into an evolutionary

explanation of ambiguity averse behavior in the original, static, Ellsberg decision problem.

In a dynamic choice environment evolutionary selection generates a connection between long

run cost benefit rules and preferences in static environments. The details of this argument

are somewhat tangential to the thrust of this paper, so I have relegated them to Appendix

G.

This line of argument further solidifies the conceptual connection between long run cost

benefit rules and seemingly ambiguity averse behavior. Non-trivial dynamical beliefs, i.e.,

beliefs described by families of stochastic processes that violated state-label invariance, can

yield violations of probabilistic behavior in a manner closely related to ambiguity aversion.

A connection between the properties of dynamical beliefs (e.g. long run risk/persistence)

and ambiguity has appeared elsewhere in the literature. Halevy & Feltkamp (2005) showed

that risk averse Bayesian agents who must choose between sequences of bets on Ellsberg urns

– one with two urns containing 50 red and 50 black balls, one with two urns of unknown

but identical composition – will prefer to bet on the ‘known’ urns. All that is required for

their result is risk aversion, and correlation between the compositions of the unknown urns;

ambiguity aversion does not enter into the analysis. Strzalecki (2013) also demonstrates a

relationship between ambiguity aversion and aversion to long run risk in a class of recursive

models of dynamic choice. On this dimension, the discussion above can be considered as

illustrating the relevance of related insights in a frequentist paradigm to long run cost benefit

analysis. Variational preferences and their properties are the appropriate tool for capturing

this connection in this context.
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4 Conclusion

This paper was motivated by the observation that, under common assumptions on the stochas-

tic process that generates risk in returns, long run cost benefit rules (i.e., rankings of risky

public projects that mature in the distant future) are variational in nature; they cannot be

represented by probabilities and expectations. The variational representation of long run cost

benefit rules provides a flexible microeconomic foundation for studying existing problems,

including the influence of risk on long run social discount rates, and related long run financial

valuation problems. By studying long run cost benefit rules as a general preference relation,

rather than under detailed structural or parametric assumptions on a stochastic process, I

have been able to leverage the tools of decision theory to provide deeper non-parametric

insights into how risk can be represented, compared, and interpreted for long run projects.

I’ve shown that long run cost benefit rules induce a natural notion of long run stochastic

dominance, which can rank stochastic processes even when they are asymptotically identical

from a probabilistic perspective. This dominance relation can be interpreted as a novel rank-

ing of the persistence of stochastic processes. I’ve also shown how and when long-run cost

benefit rules fail to be probabilistic, and illustrated how such failures are related to a dual

interpretation of variational preferences as a model of ambiguity aversion.

An upshot of this analysis is that a meaningful and decisive ranking of long run projects

can be achieved with a preference relation that is ‘almost’ static, and thus rather simpler

than the standard expected present value rule. All that is required is a change of perspective

from a probabilistic conception of risk to a conception that elevates and resolves the role of

asymptotically vanishingly likely events. Variational preferences – interpreted not as a model

of static ambiguity aversion, but as the natural large maturity limits of expected present value

functionals – achieve this for a large class of stochastic processes that encompasses many of

the models commonly studied in cost benefit analysis and social discounting.
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A Proof of Theorem 1

(ii) ⇐⇒ (iii):

We have

lim
t→∞

ϕt(R,M) ≥ lim
t→∞

ϕt(R
′,M)

⇐⇒ lim
t→∞

1

t
log Eµt(q) exp

[
−t

∫
λ(R;M)dq

]
≥ lim

t→∞

1

t
log Eµt(q) exp

[
−t

∫
λ(R′;M)dq

]
⇐⇒ − inf

q∈∆(S)

[∫
S
λ(R;M)dq + I(q)

]
≥ − inf

q∈∆(S)

[∫
S
λ(R′;M)dq + I(q)

]
where the last line follows from the assumption that µt satisfies a large deviation principle

with rate function I(q), and an application of Varadhan’s lemma (see Budhiraja & Depuis,

2013, p.7).

(i) ⇐⇒ (ii):

Let (sk)k∈N+ be a stochastic process on a set S that satisfies Assumption 1, and let λ : S → R+

be bounded and continuous, with

λmin := inf
s∈S

λ(s) > 0, λmax := sup
s∈S

λ(s) < ∞.

We have

1

t
log Vt(R;M) :=

1

t
log E

[ ∞∑
n=t

n−1∏
k=0

e−λ(sk)

]
=

1

t
log E

[ ∞∑
n=t

exp
(
−

n−1∑
k=0

λ(sk)
)]

.

For any fixed deterministic sequence κ = (s0, s1, . . .) and n ≥ t, we can split

n−1∑
k=0

λ(sk) = t

∫
λdqt(κ) +

n−1∑
j=t

λ(sj).

where qt(κ) is the empirical measure associate with the first t elements of κ. Thus

∞∑
n=t

exp
(
−

n−1∑
k=0

λ(sk)
)
= e−t

∫
λdqt(κ)Ht,

where

Ht :=

∞∑
m=0

exp
(
−

t+m−1∑
j=t

λ(sj)
)
.
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Since λmin ≤ λ(s) ≤ λmax,

mλmin ≤
t+m−1∑
j=t

λ(sj) ≤ mλmax, (m ≥ 1).

Hence

e−mλmax ≤ exp
(
−

t+m−1∑
j=t

λ(sj)
)
≤ e−mλmin .

Summing this inequality from m = 0 to ∞ gives the deterministic bounds

1

1− e−λmax
≤ Ht ≤

1

1− e−λmin
.

Thus we have

1

1− e−λmax
Eµt(q)[e

−t
∫
λdq] ≤ E

[ ∞∑
n=t

exp
(
−

n−1∑
k=0

λ(sk)
)]

≤ 1

1− e−λmin
Eµt(q)[e

−t
∫
λdq]

where µt(q) is the measure on empirical measures q at maturity t. Taking (1/t) log of this

inequality, and sending t → ∞, we find

lim
t→∞

1

t
Vt(R;M) = lim

t→∞

1

t
log Eµt(q) exp

(
−t

∫
λdq

)
∝ lim

t→∞
ϕt(R;M)

where the proportionality constant is positive and independent of R, and hence drops out of

rankings of returns.

B Relationship between Variational Ambiguity Preferences

and Long Run Cost Benefit Rules

In the variational ambiguity model preferences ⪰(2) are defined over static measurable acts

f ∈ F , which map a state space S to an outcome space O. I assume that S satisfies one

of the conditions stated in Assumption 1. The set O is assumed to be a convex subset of a

vector space, e.g. the set of lotteries over some payoffs. This implies that if f, g ∈ F , then

αf + (1 − α)g ∈ F for any α ∈ (0, 1). The representation of preferences that is axiomatized
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by Maccheroni et al. (2006) is:26

f ⪰(2) g ⇐⇒ inf
q∈∆(S)

[∫
S
fdq + C(q)

]
≥ inf

q∈∆(S)

[∫
S
gdq + C(q)

]
. (42)

Here ∆(S) is again the set of probability measures over S, and C(q) is a convex, grounded,27

lower semi-continuous function.28

Think of this setup in the Anscombe-Aumann paradigm, i.e. acts f map subjective states

s ∈ S to objective lotteries f(s) ∈ O. We say that a preference ⪰ is ambiguity averse if for all

constant acts x, f ⪰ x ⇒ f ⪰SEU x for some Subjective Expected Utility preference ⪰SEU .

The crucial feature of variational ambiguity preferences ⪰(1) is that they generically exhibit

ambiguity aversion. Naturally, this implies that they do not reduce to subjective expected

utility theory, or indeed any probabilistically sophisticated model of choice, in general.

What is the precise relationship between the variational ambiguity model and long run

cost benefit rules? There are three differences between the long run cost benefit rules in (22)

and the variational ambiguity preferences in (42):

1. The functions λ in (22), which are the objects of choice in long run cost benefit rules

(i.e., rates of discounted return), are required to be bounded and continuous on S,
whereas acts in the variational ambiguity model are only required to measurable.

2. The rate function I(q) in (22) was assumed to have compact sub-level sets, whereas the

penalty function C(q) in (42) is only lower-semicontinuous.

3. The penalty function C(q) in (42) must be convex, but this is not an absolute require-

ment for the rate function I(q) in (22).

All these differences can be attributed to requirements placed on the existence and prop-

erties of large maturity limits of cost benefit functionals. Consider limits of the form

Z(λ) := lim
t→∞

1

t
log Eµt(q) exp

[
−t

∫
S
λdq

]
where λ ∈ Cb(S).

26The representation in Maccheroni et al. (2006) is slightly different to that presented here. They show
that their axioms are represented by the function in (42) where the first term is the expectation of an affine
transformation u(f), rather than of f . They go on to show that preferences are invariant under common
(positive) rescalings of u and C. Our presentation thus corresponds to a particular normalization in which u
is the identity function, which can be implemented without loss of generality.

27A positive function is grounded if its infimum value is zero.
28The axioms that deliver this representation are as follows. First, there is a group of technical axioms that

require that preferences over acts should be complete, transitive, monotone, continuous, and non-trivial (i.e.,
there exist at least two acts that are strictly ranked). A weak independence axiom requires that αf + (1 −
α)x ⪰(1) αg + (1 − α)x ⇒ αf + (1 − α)y ⪰(1) αg + (1 − α)y for arbitrary acts f, g, constant acts x, y and
α ∈ (0, 1). Informally, mixing acts with constant acts doesn’t change their ranking. Finally, an uncertainty
aversion axiom requires f ∼ g ⇒ αf + (1− α)g ⪰(1) g for all α ∈ (0, 1). Informally, the decision-maker has a
weak preference for ‘hedging’ between two equally preferred acts.
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Differences 1. and 2. above are attributable to the assumption that Z(λ) exists for any

λ ∈ Cb(S). Bryc’s theorem (see e.g. Budhiraja & Depuis, 2013) shows that this requirement is

in fact equivalent to the existence of a large deviation principle for µt(q) (i.e., Assumption 2),

where the rate function I(q) has compact sub level sets, and is not just lower semicontinuous.

Note that even with this assumption Z(λ) may fail to exist if λ is only measurable, but not

necessarily bounded and continuous. Thus both the restriction to bounded and continuous λ,

and the assumption that I(q) has compact sub-level sets, are required for Z(λ) to exist for

all λ ∈ Cb(S).
Difference 3., i.e. convexity of the penalty function C(q), is required in the variational

ambiguity model, to ensure that it is ambiguity averse, and that an ‘inverse’ variational

formula for the penalty function exists. The convexity of rate functions (the relevant quantities

for long run cost benefit rules) has been studied extensively in the large deviations literature.29

The most easily understood condition that ensures convexity is the following: if Z(λ) is

Gateaux differentiable as a function of λ, then the rate function I(q) must be convex.30

Convexity of the rate function thus follows when we impose smoothness restrictions on long

run values.

B.1 ‘More ambiguity averse’ and Long Run Stochastic Dominance

As mentioned in the body of the manuscript, there is a duality between my notion of long run

stochastic dominance and the notion of ‘more ambiguity averse’ preferencecs in Maccheroni

et al. (2006).

Denoting a variational ambiguity preference with penalty function C(q) by ⪰(2)
C , Mac-

cheroni et al. (2006) say that ⪰(2)
CA

is more ambiguity averse than ⪰(2)
CB

if for all acts f : S → X
and constant acts x,

f ⪰(2)
CA

x ⇒ f ⪰(1)
CB

x

To understand this definition, recall that in the Anscombe-Aumann interpretation of the

variational ambiguity model acts map subjectively uncertain states s ∈ S to objective lotteries

f(s) – a constant act is therefore an objective lottery. These unambiguous acts are used to

benchmark ambiguity attitudes in the same way that deterministic outcomes benchmark risk

attitudes in expected utility theory.

Maccheroni et al. (2006) characterized the ‘more ambiguity averse’ relation thus:

29See Section 4 in Dembo & Zeitouni (2009), and in particular Lemma 4.1.21 and Corollary 4.6.14, for a
detailed treatment.

30Z(λ) is Gateaux differentiable if for all functions z : S → R, limh→0
Z(λ+hz)−Z(λ)

h
exists. The convexity

result follows from Corollary 4.6.14 in Dembo & Zeitouni (2009). The two conditions that are required in
their statement of this result – exponential tightness of µt(q) and existence of the limiting (rescaled) cumulant
generating function (i.e. Z(λ) in our notation) – are implied by the assumption that µt(q) satisfies a large
deviation principle. Theorem 18 in Maccheroni et al. (2006) states a version of this result for the variational
ambiguity model.
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Proposition 7 (Maccheroni et al. (2006)). ⪰(1)
A is more ambiguity averse than ⪰(1)

B if and

only if

∀q ∈ ∆(S), CA(q) ≤ CB(q).

The parallels between this finding and long run stochastic dominance are immediate.

C Proof of Proposition 2

Given a measure on empirical measures µt(q) satisfying Assumptions 1 and 2, with rate

function Iµ(q), define

ZIµ(λ) := lim
t→∞

1

t
log Eµt(q) exp

[
−t

∫
S
λdq

]
= − inf

q∈∆(S)

[∫
S
λdq + Iµ(q)

]
, (43)

where the latter equality holds for any λ ∈ Cb(S). Clearly,

lim
t→∞

ϕt(µt, λ) ≥ lim
t→∞

ϕt(νt, λ) ⇐⇒ ZIµ(λ) ≥ ZIν (λ) (44)

as the denominator in the definition of ϕt(µt, λ) in (27) is common to all return functions R.

For an arbitrary function I(q), define its convex conjugate

I∗(λ) = sup
q∈∆(S)

[∫
S
λdq − I(q)

]
. (45)

For an arbitrary function I∗(λ), define its convex conjugate

I∗∗(q) = sup
λ∈Cb(S)

[∫
S
λdq − I∗(λ)

]
.

If I(q) is a proper convex function (i.e., Assumption 3 holds – properness is guaranteed by

the assumption that I(q) has compact sub-level sets), Fenchel-Moreau duality (Rockafellar,

1970) implies that:

I∗∗ = I.

We have I∗(−λ) = ZI(λ), and requiring (44) to hold for all λ is equivalent to requiring

I∗µ(−λ) ≥ I∗ν (−λ)

for all λ. Since λ is an arbitrary function in Cb(S) we can rewrite this condition as I∗µ(λ) ≥
I∗ν (λ) for all λ ∈ Cb(S). This fact, combined with the Fenchel-Moreau duality condition, then

tells us that

Iµ(q) = I∗∗µ (q) = sup
λ∈Cb(S)

[∫
S
λdq − I∗µ(λ)

]
≤ sup

λ∈Cb(S)

[∫
S
λdq − I∗ν (λ)

]
= I∗∗ν (q) = Iν(q)

41



for all q ∈ ∆(S).

D Proof of Proposition 3

Consider an ergodic Markov chain on a discrete state space SN with N elements, and generic

element s. Such Markov chains have a unique globally asymptotically stable stationary dis-

tribution given by a left (row) eigenvector of the transition matrix P:

π⃗P = π⃗.

Moreover, π⃗ has strictly positive entries, by the Perron-Frobenius theorem.

We begin by characterizing the set of matrices Ω(π⃗) that are consistent with a given pos-

itive stationary distribution π⃗. First note that if P and P′ both have stationary distribution

π⃗, then clearly for any α ∈ (0, 1)

π⃗(αP+ (1− α)P′) = π⃗

Thus Ω(π⃗) is convex. We can characterize this set further by writing out the defining equation

for the stationary distribution explicitly:

π1p11 + π2p21 + . . . πNpN1 = π1

π1p12 + π2p22 + . . . πNpN2 = π2

...

π1p1N + π2p2N + . . . πNpNN = πN

We define a set of extremal matrices consistent with π⃗ by choosing exactly one non-zero value

of pij for each row i. If j∗ is the index of the non-zero column element in row i, we set

pij∗ = πj∗/πi, and pij = 0 for j ̸= j∗. There are N2 − N − 1 such extremal matrices (N2

square matrices, N constraints of the form
∑

j pij = 1, and one further constraint
∑

i πi = 1).

The set Ω(π⃗) is the convex hull of these extremal matrices.

Now for an arbitrary 1×N vector q⃗ define

J(q⃗;P) =

{
minP′∈Ω(q⃗)

∑
σ∈ΣN

D(P ′(·|s)||P (·|s))q⃗(s) q⃗ ≪ π⃗

∞ otherwise
(46)

where the minimisation is over all matrices P′ ∈ Ω(q⃗). From the chain rule for relative

entropy, J(q⃗;P) is the rate function for the empirical distribution of the Markov chain with

transition matrix P (Dembo & Zeitouni, 2009; Budhiraja & Depuis, 2013).

Next we show that J(q⃗;P) is convex in P. This follows from the fact that the relative
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entropy is convex in both its arguments. For α ∈ (0, 1), and P,Q ∈ Ω(π⃗),

J(q⃗;αP+ (1− α)Q) = min
P′∈Ω(q⃗)

∑
s

[D(P ′(·|s)||αP (·|s) + (1− α)Q(·|s))]q⃗(s)

≤ min
P′∈Ω(q⃗)

[
α
∑
s

D(P ′(·|s)||P (·|s))q⃗(s) + (1− α)
∑
s

D(P ′(·|s)||Q(·|s))q⃗(s)

]
≤ α min

P′∈Ω(q⃗)

∑
s

D(P ′(·|s)||P (·|s))q⃗(s) + (1− α) min
P′∈Ω(q⃗)

∑
s

D(P ′(·|s)||Q(·|s))q⃗(s)

= αJ(q⃗;P) + (1− α)J(q⃗;Q).

The first inequality follows from the convexity of relative entropy, and the second inequality

from the convexity of the ‘min’ function. Thus the rate function J(q⃗;P) is a convex function

on the convex set Ω(π⃗).

We now prove that long run stochastic dominance is a complete order on Ω(π⃗) when

N = 2:

Proof. For N = 2 the set Ω(q⃗) is the convex hull of 22− 2− 1 = 2 extremal matrices. Writing

q⃗ = (q 1− q) it is straightforward to show that the extremal matrices of Ω(q⃗) are

12 =

(
1 0

0 1

)
, Eq =

(
0 1
q

1−q
1−2q
1−q

)
.

Thus,

Ω(q⃗) = {(1− α)12 + αEq|α ∈ (0, 1)}. (47)

The crucial feature of Ω(q⃗) is that it is a one dimensional convex set. Notice also that

∀q⃗, lim
α→0+

J(q⃗; (1− α)12 + αEq) = 0.

From the representation (47), we can index Ω(π⃗) by a parameter α ∈ (0, 1). Slightly

abusing notation, we thus write the rate function J(q⃗;Q) as J(q⃗;α). The function J(q⃗;α)

is convex in α, with J(q⃗; 0) = 0. Hence for any α′ < α, there exists β ∈ (0, 1) such that

J(q⃗;α′) = J(q⃗;β(0) + (1− β)α) ≤ βJ(q⃗; 0) + (1− β)J(q⃗;α) = (1− β)J(q⃗;α). Sending β → 0,

and using the fact that convex functions are continuous, we obtain J(q⃗;α′) ≤ J(q⃗;α) for all

q⃗. Since α, α′ were arbitrary, we conclude that long run stochastic dominance is a complete

order on Ω(π⃗).

The proof immediately suggests a partial generalization to the case N > 2. The proof

works unmodified in higher dimensions if we replace the matrix 12 with the N -dimensional

identity matrix, and the matrix Eq with any other extremal matrix of Ω(π⃗). In this case the

long run stochastic order is complete on convex subsets of Ω(π⃗) of the form (1− α)12 + αEq
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for α ∈ (0, 1). The difference is that for N > 2 these subsets no longer coincide with the

entirety of Ω(q⃗).

E Proof of Proposition 4

Let {µt}t∈N+ and {νt}t∈N+ be sequences of probability measures on ∆(S), each satisfying a

large deviation principle with rate functions Iµ and Iν respectively, and speeds aµt , a
ν
t → ∞

such that limt→∞ aµt /a
ν
t → 1.

Let ft : R → (0,∞) be strictly increasing and convex, and assume that

lim
t→∞

1

at
log ft(x) → g(x)

where the convergence is locally uniform, and g : R → R is strictly increasing and convex.

For any convex and bounded below function Φ : ∆(S) → R define the asymptotic func-

tional

Lσ(Φ) := lim
t→∞

f−1
t

(∫
ft(Φ(q)) dσ(q)

)
, σ ∈ {µ, ν}.

Varadhan’s lemma tells us that these limits exist and satisfy

Lσ(Φ) = g−1
(

sup
q∈∆(S)

{ g(Φ(q))− Iσ(q) }
)
. (48)

I claim the following are equivalent:

(A) For every convex Φ,

Lµ(Φ) ≥ Lν(Φ).

(B) The rate functions are ordered:

Iµ(q) ≤ Iν(q) ∀ q ∈ ∆(S).

Proof. B ⇒ A: Immediate from (48).

A ⇒ B: Define the g-conjugate of a proper convex function I by

Ig(Φ) := sup
q∈∆(S)

{g(Φ(q))− I(q)}.

Since g is convex and strictly monotone, a generalized Fenchel–Moreau identity holds (Rock-

afellar, 1970):

I(q) = sup
Φ convex

{
Φ(q)− g−1(Ig(Φ))

}
.
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Condition (A) means Igµ(Φ) ≥ Igν (Φ) for all convex Φ, hence

Iµ(q) = sup
Φ convex

{Φ(q)− g−1(Igµ(Φ))} ≤ sup
Φ convex

{Φ(q)− g−1(Igν (Φ))} = Iν(q),

which yields Iµ ≤ Iν .

The final step of the proof is to note first that asymptotic equality of marginals of µt and

νt is guaranteed if argminqIν(q) = argminqIµ(q) = q∗ for some unique q∗ ∈ ∆(S), and second

that the case of long run stochastic dominance corresponds to ft(x) = exp(tx), and speeds

aµt = aνt = t.

F Proof of Proposition 6

As in (43) define

ZI(f⃗) := − inf
q⃗∈∆(SN )

[
f⃗ · q⃗ + I(q⃗)

]
, (49)

where I(q⃗) is a rate function with compact sublevel sets on ∆(SN ) satisfying Assumption 3.

We begin with a lemma:

Lemma 1. Given two rate functions I(q⃗), J(q⃗), if for any f⃗ , g⃗ ∈ RN

ZI(f⃗) ≥ ZI(g⃗) ⇐⇒ ZJ(f⃗) ≥ ZJ(g⃗)

then I = J pointwise on ∆(SN ).

Proof. The fact that ZI and ZJ yield numerically representable rankings of acts f⃗ that are

ordinally equivalent implies that there exists an increasing function U : R → R such that

ZJ(f⃗) = U(ZI(f⃗))

for all f⃗ . Now notice that for any rate function I, and any constant act a1⃗, a ∈ R, we have

ZI(f⃗ + a1⃗) = ZI(f⃗)− a

for any f⃗ . Thus for any a ∈ R, and any f⃗

ZJ(f⃗ + a1⃗) = U(ZI(f⃗ + a1⃗)) = U(ZI(f⃗)− a) = ZJ(f⃗)− a = U(ZI(f⃗))− a.

Since ZI(f⃗) can take values in any bounded interval in R, we have

U(ϵ− a) = U(ϵ)− a
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for any ϵ in any bounded interval of R, and any a ∈ R. Defining Ũ(x) = U(x)− x, we have

Ũ(x− a) = Ũ(x− a)− (x− a) = Ũ(x)− x = Ũ(x)

for any a ∈ R, and any x in a bounded interval of R. This implies that any real value a is a

period of Ũ(x); the only function that has any real number as a period is a constant function.

Thus

U(x) = x+ c

for some c ∈ R. However, since ZI (⃗0) = − inf q⃗ I(q⃗) = 0 for any rate function I(q⃗), we must

have U(0) = 0 ⇒ c = 0. Thus, ZI(f⃗) = ZJ(f) for any f⃗ .

Now,

ZI(f⃗) = I∗(−f⃗)

where I∗ is the convex conjugate of I (see (45)) and hence from Assumption 3 and Fenchel-

Moreau duality,

I(q) = I∗∗(q) = sup
f⃗

f⃗ · q⃗ − I∗(f⃗) = sup
f⃗

f⃗ · q⃗ − ZI(−f⃗).

Thus ZI(f⃗) = ZJ(f⃗) for all f⃗ implies I = J pointwise.

For any vector f⃗ ∈ RN and any permutation σ of SN , define f⃗ ◦ σ = (fσ(1), . . . , fσ(N)).

We wish to prove that, if for any f⃗ , g⃗ and any permutation σ,

f⃗ ⪰I(q⃗||p⃗) g⃗ ⇐⇒ f⃗ ◦ σ ⪰I(q⃗||p⃗◦σ) g⃗ ◦ σ (50)

then

I(q⃗ ◦ σ||p⃗ ◦ σ) = I(q⃗||p⃗)

for any q⃗ and any permutation σ. Under ⪰I(q⃗||p⃗◦σ) the value of an act f⃗ ◦ σ is represented by

− inf
q⃗
f⃗ ◦ σ · q⃗ + I(q⃗||p⃗ ◦ σ) = − inf

q⃗

∑
i

fσ(i)qi + I(q⃗||p⃗ ◦ σ) = − inf
q⃗

∑
i

fiqσ−1(i) + I(q⃗||p⃗ ◦ σ).

Defining q⃗ ′ = q⃗ ◦ σ−1, this last expression is equal to

− inf
q⃗ ′

∑
i

fiq
′
i ++I(q⃗ ′ ◦ σ||p⃗ ◦ σ).

Thus, by Lemma 1, (50) is satisfied if and only if

I(q⃗||p⃗) = I(q⃗ ◦ σ||p⃗ ◦ σ)
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for all q⃗ ∈ ∆(SN ). As σ was arbitrary, this must hold for all permutations of SN .

G Evolutionary foundation for variational ambiguity prefer-

ences

The basic setup follows that in Robson et al. (2023). We imagine a continuum of agents,

indexed by i ∈ I, each of whom faces an idiosyncratic risk sit ∈ S at time t. Individuals are

characterized by a state variable wi
t. If we interpret the model in economic terms, wi

t can be

viewed as individual i’s wealth; if we interpret it biologically wi
t is a measure of i’s reproductive

fitness. For simplicity we will refer to wi
t as wealth, but the biological interpretation should

be born in mind.

If individual i invests in an asset with rate of return −r(s) ∈ R, wi evolves according to

wi
t = e−r(sit)wi

t−1.

We assume that for each i, sit is stochastic process whose empirical measures obeys a large

deviation principle with rate function I(q), and that sit is independent of sjt for i ̸= j, i.e.,

risk is idiosyncratic. Unlike Robson et al. (2023), we allow for the possibility of dynamical

structure in the wealth shocks, i.e., they need not be i.i.d. over time.

As was demonstrated in the discussion of Theorem 1, the proportion of the population

that experiences a realization of the sequence κi = (si0, s
i
1, . . .) with empirical measure qt(·;κi)

declines like exp(−tI(qt)) asymptotically. The wealth of an individual who invests in asset

r and experiences the empirical measure q grows like exp(−t
∫
S rdq) (recall that r(s) may

be negative). As t → ∞, the growth of aggregate wealth (or fitness) in a population of

like individuals will be determined by the vanishingly small set of agents who experience the

goldilocks empirical measure that maximizes the asymptotic growth factor

exp

[
−t

(∫
S
rdq + I(q)

)]
.

These agents’ contribution to the aggregate wealth of the population will be infinitely larger

than that of all other agents, asymptotically. Following Robson et al. (2023), I assume that

evolution will select for individuals who rank assets according to the long run growth rate of

aggregate wealth in a population of like agents. Individuals that do not do this will suffer

an infinite penalty at the population level asymptotically, and will thus be driven out by

evolution. As such, asset r will be ‘evolutionarily preferred’ to asset r′ if and only if

− inf
q∈∆(S)

[∫
S
rdq + I(q)

]
≥ − inf

q∈∆(S)

[∫
S
r′dq + I(q)

]
⇐⇒ r ⪯I(q) r

′.

As I discussed in footnote 12, we can always construct a stochastic process that gives
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rise to a pre-specified rate function I(q), and so we have found an evolutionary foundation

for arbitrary variational ambiguity preferences. This analysis shows that preferences that

violate probabilistic sophistication can emerge endogenously from a classical (i.e., objective)

risk environment.
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